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Abstract—Recent studies applied Parameter Efficient Fine-
Tuning techniques (PEFTs) to efficiently narrow the performance
gap between pre-training and downstream. There are two im-
portant factors for various PEFTs, namely, the accessible data
size and fine-tunable parameter size. A natural expectation for
PEFTs is that the performance of various PEFTs is positively
related to the data size and fine-tunable parameter size. However,
according to the evaluation of five PEFTs on two downstream
vision-language (VL) tasks, we find that such an intuition holds
only if the downstream data and task are not consistent with
pre-training. For downstream fine-tuning consistent with pre-
training, data size no longer affects the performance, while the
influence of fine-tunable parameter size is not monotonous. We
believe such an observation could guide the choice of training
strategy for various PEFTs.

Index Terms—Parameter Efficient Fine-tuning, Vision-
Language Pre-training

I. INTRODUCTION

Vision-language pre-training (VLP) has emerged as a fun-
damental paradigm to boost the performance of downstream
VL tasks. Most existing works boost the performance of the
pre-trained model by designing novel pre-training tasks [1], in-
creasing the size of both pre-training dataset [2] and the model
parameters [3], [4]. Although VLP has shown promising zero-
shot performance on the downstream tasks, fine-tuning still
plays an indispensable role in narrowing the gap between pre-
training and downstream domains.

Taking the fine-tuning cost into consideration, numerous
Parameter Efficient Fine-Tuning (PEFT) methods have been
proposed to adapt the VLP models to downstream tasks in
an efficient manner. More specifically, PEFT methods only
fine-tune a few parameters while freezing the most pre-trained
parameters. In this study, we mainly focus on the PEFT meth-
ods that insert additional parameters into different positions of
the VLP models, which we refer to as the exogenous PEFT.
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Fig. 1. The performance is only affected by the size of fine-tunable
parameters when the downstream task and data are consistent with pre-
training. Otherwise, the performance is positively related to data and parameter
size.

For clarity, we divide the exogenous PEFT methods into em-
bedding composition ones (e.g., prompt-tuning [5] and prefix-
tuning [6]) and layer composition ones (e.g., Adapter [7], [8]
and LoRA [9]), according to the inserted position. Almost
all existing PEFT methods seek to achieve competitive per-
formance compared to the full fine-tuning counterparts while
embracing high training efficiency. Intuitively, one may expect
that the performance of various PEFTs is positively related to
the accessible data size and fine-tunable parameter size.

To evaluate such an expectation, we conduct an empirical
analysis with five PEFTs on two downstream VL tasks.
Specifically, we first offer a novel unified view of the in-
vestigated prompt-tuning, prefix-tuning, LoRA, serial adapter-
tuning, and parallel adapter-tuning. Then, considering the
differences between the pre-training and downstream fine-
tuning, the accessible downstream data size, and the size of the
fine-tunable parameters, we conduct a series of experimental
evaluations on two widely-used VL datasets, i.e., MSCOCO
Caption and VQAv2. It is worth noting that the image caption
task is usually adopted as a pre-training task in the VLP,
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but not with VQA. Therefore, the image caption and the
corresponding data in the downstream tasks could be regarded
as consistent with the VLP, while the VQA one is inconsistent.

The contributions of this study mainly lie in the new empir-
ical observations. As illustrated by Fig. 1, if the downstream
task and dataset are not consistent with pre-training, the data
size and the fine-tunable parameter size are positively related
to the performance. If consistent, the data size no longer affects
the performance of various PEFTs while the influence of fine-
tunable parameter size is not monotonous. We believe that
such observations would guide the training strategy design
of various PEFTs. Furthermore, our experimental results also
reveal an additional phenomenon: Considering the training
efficiency and performance, layer composition (e.g., LoRA)
could be a better choice for the downstream adaptation of the
VLP model.

II. RELATED WORK

A. PEFT for VLP model

A growing body of research has been devoted to finding
parameter-efficient alternatives to adapt large-scale VLP mod-
els to downstream tasks and to reduce the cost of various
aspects such as memory and storage. The representative works
for the first line are prompt-tuning [5] and prefix-tuning [6].
The early prompt-based works employ prompt-tuning [5]
to manage the few-shot visual tasks [10]. The most recent
researches expand the application of prefix-tuning into the
VLP [11] model and achieve comparable performance with
full finetuning at low cost. The other line of work is based on
the adapter [7] and LoRA [9]. Most recent works [12] resort
to the adapter layer to extend the multimodal abilities of the
generative large-scale language model. Besides, LoRA [9] are
also used to adapt text-only LLM for multimodal tasks [13].
Although all of these methods have demonstrated their effec-
tiveness, there is currently no analysis to investigate how the
data size and fine-tunable parameter size affect various PEFTs.

B. Empirical PEFT analysis

Recent studies have conducted numerous experiments to ex-
amine the possible factors that influence the performance and
robustness of PEFT. Chen et.al [14] reveal that full fine-tuning
cannot be entirely replaced by PEFT approaches currently in
NLP since it cannot attain superior performance to full fine-
tuning when given adequate fine-tuning budget and data size.
Sung et.al [15] finds that the vanilla adapter [7] achieved
the best VL task performance among its variants. Regarding
robustness, Chen et.al [16] deem that neither full fine-tuning
nor PEFT approaches consistently provide robustness for data
corruption. Differently, this study investigates an inevitable
problem Are the data size and fine-tunable parameter size
positively related to the VL performance of various PEFTs?

III. A UNIFIED VIEW FOR PEFT

In this section, we briefly review the investigated PEFTs
from a unified perspective view. The exogenous parameter
fine-tuning efficiently trains the VLP model by incorporating

Fig. 2. Unified view of evaluated PEFT methods within a transformer block.

additional trainable parameters into the input, e.g., prompt-
tuning and prefix-tuning, or intermediate layers of the model,
e.g., LoRA, serial adapter-tuning, and parallel adapter-
tuning. To be specific, given a pre-trained VLP model F
with parameters Θ, PEFT resorts to fine-tuning the additional
parameters Φ to adapt the pre-trained model F from pre-
training task to downstream task, e.g., VQA. In formal, with
the input embedding x ∈ Rn×d for a transformer block and a
ground truth y, the objective of such PEFT could be unified
as follow:

argmin
Φ

L (F (x;Θ,Φ) ,y)

= L (fn ◦ · · · ◦ f1(x;Θ1,Φ1),y) ,
(1)

where L and fi denotes the loss function of downstream
task and the i-th transformer block, respectively. Accord-
ing to the position of the extra parameters introduced by
PEFT, we categorize the tested prompt-tuning and prefix-
tuning as embedding composition and serial adapter-tuning,
parallel adapter-tuning, and LoRA as layer composition. We
will elaborate on them in the following.

A. Full finetuning

The most straightforward way to adapt the pre-trained VLP
models to downstream tasks is full finetuning. Yet, directly
updating the full set of Θ costs vast computational resources,
particularly as model size continues to increase.

B. Embedding composition

Prior study [5] proposed “continuous” prompt which con-
catenates trainable parameters Φ to the embedding of the
transformer layers and hence we entitle them as embedding
composition. For example, prompt-tuning [5] prepends the
model input embedding x ∈ Rn×d with a learnable embedding
Φ := p ∈ Rp×d optimized directly through gradient descent,
where n/p denotes the length of the input/prompt embedding
and d is the dimension of them. According to Eq.1, the
objective of prompt-tuning could be rewritten following:

argmin
p

L (F ([p : x]) ,y) , (2)

where [· : ·] indicates the concatenation operation. Instead
of adding parameters to the input embedding of the model,



prefix-tuning [6] prepends trainable tokens, i.e., Φ := {pi}n,
to the hidden states of all the transformer blocks. Formally,
the corresponding objective is as follows:

argmin
{pi}n

1

L
(
fp
n ◦ fp

n−1 ◦ · · · ◦ f
p
1 (x),y

)
, (3)

where fp
i (x) := fi([pi : x]). Usually, one could use an

additional MLP encoder P to encode {pi}n for better training
stability.

C. Layer composition

Differing from embedding composition, layer composition
inserts an extra sub-network with few trainable parameters into
transformer blocks. For example, [7] firstly proposes a vanilla
adapter layer that consists of two fully connected layers.
Following effort [8] extends it and proposes a parallel variant
instead of inserting the adapter layer sequentially. Formally,
inserting two serial/parallel adapter layers {A{s,p}

i,1 , A
{s,p}
i,2 }

to the i-th transformer block as additional parameters Φ :=

{A{s,p}
i,1 , A

{s,p}
i,2 }n, one could have the following objective of

adapter-tuning:

argmin
{Ai,1,Ai,2}n

L
(
fa
n ◦ fa

n−1 ◦ · · · ◦ fa
1 (x),y

)
, (4)

where fa
i could be the i-th transformer block with either

sequential adapter layer fsa
i or parallel adapte layer fpa

i :

fsa
i (x) :=AL ◦As

i,2 ◦ FFN◦
AL ◦As

i,1 ◦MHA(x,x),
(5)

fpa
i (x) := AL(Ap

i,2(hmed) + FFN(hmed)) (6)

hmed = AL
(
Ap

i,1(x) +MHA(x,x)
)

(7)

A
{s,p}
i (x) := ReLU(xWdown)Wup + x (8)

where AL, FFN , and MHA denote the skip-connection
and layernorm, feed-forward, and multi-head attention within
a transformer block, respectively. Further, the matrices, i.e.,
Wdown ∈ Rdh×l and Wup ∈ Rl×dh , are the trainable
parameters of a adapter layer, where dh denotes the dimension
of hidden state.

In addition to the adapter-tuning, LoRA [9] inserts
reparametrized fully connected layers into the self-attention
layers, which is inspired by the intrinsic dimensionality [17].
In detail, LoRA utilizes the low-rank decomposition matri-
ces [17] to reparameterize the additional MLP layers. In
formal, given the number of head k, the hidden state of
i-th attention head hi, and the trainable parameters, i.e.,
Φ := {Φi,1,Φi,2}n which are plugged into the MHA layers,
one could have the following objective for LoRA:

argmin
{Φi,1,Φi,2}n

L
(
f l
n ◦ f l

n−1 ◦ · · · ◦ f l
1(x),y

)
. (9)

The transformer block with LoRA layer could be as follows:

f l
i (x) :=AL ◦ FFN ◦AL ◦MHAl

i(x,x), (10)

MHAl
i(g,x) = [h1

i : h2
i : · · · : hk

i ]Wo, (11)

hj
i = Attn (x

(
Wj

q +Φi,1

)
,

g (Wj
k +Φi,2 ),gW

j
v ),

(12)

Φi,m = BA, (13)

where the parameters of multi-head attention are

Wo ∈ Rd×d,Wj
q,W

j
k,W

j
v ∈ Rd× d

k , (14)

and the low-rank trainable matrices for the LoRA layer are

B ∈ Rd×r,A ∈ Rr× d
k , r ≪ d

k
. (15)

MHA functions as self-attention, such that g = x. Otherwise,
it operates as cross-attention.

IV. EXPERIMENTAL SETUP

A. Base model

We adopt the recently-proposed VLP model, namely,
mPLUG [18], as our base model, which employs the
discriminative-generative pre-training tasks [3], [4]. In brief,
mPLUG adopts the pre-trained CLIP-ViT [2] (ViT-B/16) as
visual encoder and two BERTbase [19] models for textual-
visual feature fusing and text decoding (See supplementary
material for more details).

B. Dataset and task

We investigate two widely-used and distinct VL down-
streaming tasks in this study, i.e., visual question answering on
VQAv2 [20] and image captioning on MSCOCO Caption [21]
(See supplementary material for dataset statistics). The VQA
is a multi-modal image understanding task that requires the
VLP model to answer the textual questions referring to the
corresponding image. Following [3], [4], we treat it as an
answer generation without constraints for better generality.
Image captioning is a multi-modal text generation task that
asks for a VLP model to generate an accurate and fluent
caption for a given image.

C. Implementation details

Both for captioning and VQA, the visual encoder (CLIP-
ViT-B/16) takes the resized 256 × 256 image as input. The text
encoder takes a caption prompt {a picture of} and a question
{Question: {#question} Answer: } as the input for captioning
and VQA, respectively. Then the caption and answer would be
generated by the following text decoder. During training, we
used the AdamW optimizer with a weight decay of 0.05. The
learning rate is warmed up to the highest learning rate in the
first epoch, and decayed to the lowest learning rate following
a cosine schedule. All the experiments are optimized by cross-
entropy loss and conducted on four V100-32G-SMX2 GPUs
with a total batch size of 256 (See supplementary material for
details). We report the best performance metric amongst the
whole training. To be specific, the CIDEr [22] on Karpathy-test
split is used for image captioning, whilst the overall accuracy
on VQAv2 validation split is reported 1 by following [3], [18].

1The submission on the test set is limited: https://eval.ai/web/challenges/
challenge-page/830/phases

https://eval.ai/web/challenges/challenge-page/830/phases
https://eval.ai/web/challenges/challenge-page/830/phases


Fig. 3. Layer composition PEFTs achieve better performance than embedding composition on MSCOCO Caption. Both layer and embedding composition
PEFTs could achieve comparable performance with full fine-tuning. The performance of the tested PEFTs is regardless of the accessible data size. Increasing
the size of fine-tunable parameters by simultaneously fine-tuning the final classifier only improves the performance of prompt-tuning, and hurts that of the
layer composition.

D. Evaluation protocol

We conduct experiments on two VL downstream tasks with
five PEFTs, i.e., prompt-tuning, prefix-tuning, LoRA, serial
adapter-tuning, and parallel adapter-tuning, to investigate how
the accessible data size and the fine-tunable parameter size
affects the performance of them. Firstly, the available data for
different tasks varies, so we employ a random sampling to
select diverse proportional Image-Caption and QA pairs from
MSCOCO Caption and VQAv2 datasets for training. Second,
the available hardware constraints on the available fine-tunable
parameters of various PEFT. To explore how the size of the
fine-tunable parameters influence the performance of different
PEFTs, we modulate the length of the prompt, the length of
the prefix, the rank of LoRA, as well as the hidden size of both
the serial adapter and the parallel adapter. (See supplementary
material for the details).

V. RESULTS AND ANALYSIS

A. PEFT with various data sizes

In this section, we investigate how the accessible data size
influences the performance of various PEFTs. According to
Fig. 3, one could find that the performance of the tested
PEFTs is regardless of different accessible data sizes of
MSCOCO Caption, which is different from our intuition.
However, from Fig. 4, the performance of all the tested PEFTs
steadily increases when the accessible training data size of
VQAv2 increases. This could be imputed to that captioning
on MSCOCO Caption is consistent with pre-training while
VQAv2 is not. To be specific, vision-language pre-training
usually utilizes a large-scale of image-text pairs [3], [4], [18]
and the downstream data may inevitably be used for pre-
training, e.g., MSCOCO Caption.

B. PEFT with various parameter sizes
In this section, we investigate how the fine-tunable param-

eter size affects the performance of various PEFTs. From
Fig. 4 and 3, the fine-tunable parameter size does affect the
performance of various PEFTs. To be specific, the fine-tunable
parameter size is positively related to the performance when
one adopts the VL downstream task and data that are different
from pre-training, e.g., VQA. Such a phenomenon is consistent
with our intuition. If we increase the fine-tunable parameter
size by simultaneously fine-tuning the final classifier with
various PEFTs, the performance on VQAv2 can be further
improved and they could even achieve superior performance
than full fine-tuning.

However, when the VL downstream task and data are
consistent with the pre-training, i.e., captioning on MSCOCO
Caption, there exists an optimal fine-tunable parameter choice,
which is different from our intuition. Additionally, increasing
the fine-tunable parameter size by simultaneously fine-tuning
the final classifier could not always improve the performance
on MSCOCO Caption. We deem such a phenomenon also
attributes to the consistency between downstream fine-tuning
and pre-training. When the downstream fine-tuning is consis-
tent with pre-training, too many fine-tunable parameters could
lead to over-fitting. (See supplementary material for further
discussion.)

C. Further analysis
Besides, our experimental results also provide a comparison

of various PEFTs. Fig. 3 indicates that the tested PEFTs always
outperform the full fine-tuning except for the prompt-tuning
on MSCOCO Caption. Such phenomenon may be attributed
to the fact that prompt-tuning possesses less than 0.16% fine-
tunable parameters which is less than others. On the other



Fig. 4. Layer composition PEFTs achieve better performance than embedding composition on VQAv2. Empirically, Layer composition PEFTs could
achieve comparable performance with full fine-tuning, while embedding composition PEFTs cannot. The performance of the tested PEFTs is positively
correlated to the accessible training data and fine-tunable parameters. Additionally, simultaneously fine-tuning the final classifier of the model could further
boost the performance and even achieve superior performance than full fine-tuning.

…

Fig. 5. The comparison of various PEFTs.

hand, the embedding composition PEFTs lag far from full fine-
tuning, while the layer embedding composition PEFTs achieve
comparable performance to the full fine-tuning, illustrated by
Fig. 4. Eventually, by considering the product of data size
and fine-tunable parameter size as computation cost, one could
easily find which PEFT is better for the tested VLP model.
According to Fig. 5, the layer composition offers superior
training efficiency and performance on the two downstream
VL tasks.

VI. CONCLUSION

In this paper, we conduct a comprehensive study on five
PEFTs on two VL downstream datasets to investigate: how
accessible data size and fine-tunable parameter size affect the
performance of various PEFTs. Referring to our experiments,
we find that if the downstream data and task are not consistent
with pre-training, increasing the fine-tunable parameter size
or accessible data size benefits the performance of PEFT
as expected. Nevertheless, if consistent, the data size does

not affect the performance and the fine-tunable parameter
holds an optimal size choice. Such a phenomenon could
guide the training strategy design of various PEFTs. We leave
the exploration of the influence of the base model, more
downstream tasks, and data to future work.

ACKNOWLEDGMENT

REFERENCES

REFERENCES

[1] Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai Bai, Zhikang Li,
Jianxin Ma, Chang Zhou, Jingren Zhou, and Hongxia Yang, “OFA: Uni-
fying Architectures, Tasks, and Modalities Through a Simple Sequence-
to-Sequence Learning Framework,” in Proc. of ICML, 2022, pp. 23318–
23340.

[2] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel
Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin,
Jack Clark, Gretchen Krueger, and Ilya Sutskever, “Learning Transfer-
able Visual Models From Natural Language Supervision,” in Proc. of
ICML, 2021, pp. 8748–8763.

[3] Junnan Li, Ramprasaath R. Selvaraju, Akhilesh Gotmare, Shafiq R. Joty,
Caiming Xiong, and Steven Chu-Hong Hoi, “Align before Fuse: Vision
and Language Representation Learning with Momentum Distillation,”
in Proc. of NeurIPS, 2021, pp. 9694–9705.

[4] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi, “Blip:
Bootstrapping language-image pre-training for unified vision-language
understanding and generation,” in Proc. of ICML, 2022, pp. 12888–
12900.

[5] Brian Lester, Rami Al-Rfou, and Noah Constant, “The power of scale for
parameter-efficient prompt tuning,” arXiv preprint arXiv:2104.08691,
2021.

[6] Xiang Lisa Li and Percy Liang, “Prefix-Tuning: Optimizing Continuous
Prompts for Generation,” in Proc. of ACL, 2021, pp. 4582–4597.

[7] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone,
Quentin De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Syl-
vain Gelly, “Parameter-efficient transfer learning for NLP,” in Proc. of
ICML, 2019, pp. 2790–2799.

[8] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and
Graham Neubig, “Towards a Unified View of Parameter-Efficient
Transfer Learning,” in Proc. of ICLR, 2022.



[9] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi
Li, Shean Wang, Lu Wang, and Weizhu Chen, “LoRA: Low-Rank
Adaptation of Large Language Models,” in Proc. of ICLR, 2022.

[10] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu,
“Learning to Prompt for Vision-Language Models,” Int. J. Comput.
Vis., pp. 2337–2348, 2022.

[11] Muhammad Uzair Khattak, Hanoona Rasheed, Muhammad Maaz,
Salman Khan, and Fahad Shahbaz Khan, “Maple: Multi-modal prompt
learning,” in Proc. of CVPR, 2023, pp. 19113–19122.

[12] Renrui Zhang, Jiaming Han, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan
Lu, Hongsheng Li, Peng Gao, and Yu Qiao, “LLaMA-Adapter: Efficient
Fine-tuning of Language Models with Zero-init Attention,” CoRR, vol.
abs/2303.16199, 2023.

[13] Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan, Yiyang
Zhou, Junyang Wang, Anwen Hu, Pengcheng Shi, Yaya Shi, Chenliang
Li, Yuanhong Xu, Hehong Chen, Junfeng Tian, Qian Qi, Ji Zhang, and
Fei Huang, “mPLUG-Owl: Modularization Empowers Large Language
Models with Multimodality,” CoRR, vol. abs/2304.14178, 2023.

[14] Guanzheng Chen, Fangyu Liu, Zaiqiao Meng, and Shangsong Liang,
“Revisiting Parameter-Efficient Tuning: Are We Really There Yet?,” in
Proc. of EMNLP, 2022, pp. 2612–2626.

[15] Yi-Lin Sung, Jaemin Cho, and Mohit Bansal, “VL-ADAPTER:
Parameter-Efficient Transfer Learning for Vision-and-Language Tasks,”
in Proc. of CVPR, 2022, pp. 5217–5227.

[16] Shuo Chen, Jindong Gu, Zhen Han, Yunpu Ma, Philip H. S. Torr,
and Volker Tresp, “Benchmarking Robustness of Adaptation Methods
on Pre-trained Vision-Language Models,” CoRR, vol. abs/2306.02080,
2023.

[17] Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer, “Intrinsic
Dimensionality Explains the Effectiveness of Language Model Fine-
Tuning,” in Proc. of ACL, 2021, pp. 7319–7328.

[18] Chenliang Li, Haiyang Xu, Junfeng Tian, Wei Wang, Ming Yan, Bin Bi,
Jiabo Ye, He Chen, Guohai Xu, Zheng Cao, Ji Zhang, Songfang Huang,
Fei Huang, Jingren Zhou, and Luo Si, “mPLUG: Effective and Efficient
Vision-Language Learning by Cross-modal Skip-connections,” in Proc.
of EMNLP, 2022, pp. 7241–7259.

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova,
“BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding,” in Proc. of NAACL, 2019, pp. 4171–4186.

[20] Yash Goyal, Tejas Khot, Aishwarya Agrawal, Douglas Summers-Stay,
Dhruv Batra, and Devi Parikh, “Making the V in VQA Matter: Elevating
the Role of Image Understanding in Visual Question Answering,” Int.
J. Comput. Vis., pp. 398–414, 2019.

[21] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh
Gupta, Piotr Dollár, and C. Lawrence Zitnick, “Microsoft COCO
Captions: Data Collection and Evaluation Server,” CoRR, vol.
abs/1504.00325, 2015.

[22] Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi Parikh, “CIDEr:
Consensus-based image description evaluation,” in Proc. of CVPR, 2015,
pp. 4566–4575.

[23] Bin Bi, Chenliang Li, Chen Wu, Ming Yan, Wei Wang, Songfang
Huang, Fei Huang, and Luo Si, “PALM: Pre-training an Autoencod-
ing&Autoregressive Language Model for Context-conditioned Genera-
tion,” in Proc. of EMNLP, 2020, pp. 8681–8691.

APPENDIX A
EXPERIMENTAL SETUP

A. Data Details

We investigate two widely-used and distinct VL down-
streaming tasks in this study, i.e., visual question answering on
VQAv2 [20] and image captioning on MSCOCO Caption [21].
The dataset statistics are shown in Table I.

B. Base model

We utilize the recent VLP model, namely, mPLUG [18], as
our base model, which follows the discriminative-generative
pre-train tasks [3], [4]. In general, mPLUG resorts to three
discriminative tasks, i.e., Image-Text Contrastive Learning [3],

Image-Text Matching [3], and Masked Language Model-
ing [19], for multi-modal representation alignment and un-
derstanding, and one multi-modal text generation task, i.e.,
PrefixLM [23] for multi-modal text-generation, respectively.
In this study, all the experiments are conducted with mPLUG-
base model, which adopts one pre-trained with CLIP-ViT [2]
(ViT-B/16) as visual encoder and two BERTbase [19] models
for textual and visual feature fusing and text decoding.

C. Implementation details

Both for captioning and VQA, the visual encoder (CLIP-
ViT-B/16) takes the resized 256 × 256 image as input. The text
encoder takes a caption prompt {a picture of} and a question
{Question: {#question} Answer: } as the input for captioning
and VQA, respectively. Then the caption and answer would
be generated by the following text decoder. For the image
captioning on MSCOCO Caption, we adopt iteration-based
training instead of epoch-based training 2 since such data is
widely used [3], [4], [18] and has been learned in the pre-
training. In contrast, we used epoch-based training for VQA
on VQAv2 for it is not introduced in the pre-training. During
training, we adopt the AdamW optimizer with a weight decay
of 0.05. The learning rate is warmed up to the highest learning
rate in the first epoch, and decayed to the lowest learning rate
following a cosine schedule. All the experiments are optimized
by cross-entropy loss and conducted on four V100-32G-SMX2
GPUs with a total batch size of 256.

APPENDIX B
PEFT EASILY OVER-FITTING ON MSCOCO CAPTION

We also provide the validation curve of the five PEFTs on
MSCOCO Caption, illustrated from Fig 6 to Fig. 10. One
could also that since the captioning on MSCOCO Caption
is consistent with the pre-training, scaling up the fine-tunable
parameter size would not monotonously improve the perfor-
mance of PEFTs. We argue that if the downstream task is
consistent with pre-training, too many fine-tunable parameters
would lead to over-fitting.

TABLE I
DATASET STATISTICS

Split VQAv2 MSCOCO Caption

Images QA Pairs Images Captions
Train 113.2K 605.1K 113.2K 566.8K
Val 5.0K 26.7K 5.0K 5.0K
Test 5.0K 26.3K 5.0K 5.0K

2Epoch denotes how many times the model sees the complete dataset.
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Fig. 6. Validation curve of prompt-tuning on MSCOCO Caption.
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Fig. 7. Validation curve of prefix-tuning on MSCOCO Caption.
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Fig. 8. Validation curve of LoRA on MSCOCO Caption.

130

131

132

133

134

135

136

137

138

139

140

0 500 1000 1500 2000 2500 3000 3500 4000 4500

CI
DE

r

Iteration

Validation Curve of Serial Adapter on MSCOCO Caption (Hidden Size = 16)

0.01 0.02 0.04 0.08 0.1 0.2 0.4 0.8 1

(a) Hidden-size=16.

133.5

134

134.5

135

135.5

136

136.5

137

137.5

0 500 1000 1500 2000 2500 3000 3500 4000 4500

CI
D
Er

Iteration

Validation Curve of Serial Adapter on MSCOCO Caption (Hidden Size = 128)

0.01 0.02 0.04 0.08 0.1 0.2 0.4 0.8 1
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Fig. 9. Validation curve of serial adapter on MSCOCO Caption.
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Fig. 10. Validation curve of parallel adapter on MSCOCO Caption.
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