
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 33, 2024 2587

Cross-Modal Retrieval With Noisy Correspondence
via Consistency Refining and Mining

Xinran Ma , Mouxing Yang , Yunfan Li , Peng Hu , Jiancheng Lv , Senior Member, IEEE,
and Xi Peng , Senior Member, IEEE

Abstract— The success of existing cross-modal retrieval (CMR)
methods heavily rely on the assumption that the annotated
cross-modal correspondence is faultless. In practice, however,
the correspondence of some pairs would be inevitably contami-
nated during data collection or annotation, thus leading to the
so-called Noisy Correspondence (NC) problem. To alleviate the
influence of NC, we propose a novel method termed Consistency
REfining And Mining (CREAM) by revealing and exploiting the
difference between correspondence and consistency. Specifically,
the correspondence and the consistency only be coincident for
true positive and true negative pairs, while being distinct for
false positive and false negative pairs. Based on the observation,
CREAM employs a collaborative learning paradigm to detect
and rectify the correspondence of positives, and a negative
mining approach to explore and utilize the consistency. Thanks
to the consistency refining and mining strategy of CREAM,
the overfitting on the false positives could be prevented and
the consistency rooted in the false negatives could be exploited,
thus leading to a robust CMR method. Extensive experiments
verify the effectiveness of our method on three image-text
benchmarks including Flickr30K, MS-COCO, and Conceptual
Captions. Furthermore, we adopt our method into the graph
matching task and the results demonstrate the robustness of our
method against fine-grained NC problem. The code is available
on https://github.com/XLearning-SCU/2024-TIP-CREAM.

Index Terms— Robust cross-modal retrieval, noisy correspon-
dence, multi-modal learning, graph matching.

I. INTRODUCTION

CROSS-MODAL retrieval (CMR) [2], [3], [4], [5], [6]
aims at matching associated samples across different

modalities, which has attracted increasing attention from
both academic and industry communities. The key of CMR
is to bridge the modality gap, hoping similar cross-modal
samples would gather together in the feature space. To this
end, most existing works [7], [8], [9], [10], [11] aim to
learn the cross-modal consistency from the correspondence of
associated (i.e., positive) pairs. Although achieving promising
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Fig. 1. Illustrations of the NC problem and our observations. (a) Noisy
Correspondence (NC): the dataset consists of both true and false positive pairs,
while the ground truth is agnostic. NC will reduce the consistency of positives
and mislead the optimization direction, thus degrading the performance of
CMR models. (b) Diverse Potential Consistency: give an anchor, we observe
that the consistency is different from the correspondence and with various
forms in the negative bank. As shown, the pairs with concrete consistency are
treated as negative, which however should be positive. The implicit pairs show
the consistency beyond words, and the partial pairs have the consistency at the
token instead of the instance level. Examples are selected from the Conceptual
Captions [1] dataset, and the numerical values in images imply that our model
could mine and exploit the potential consistency.

performance, these works heavily rely on the assumption that
the annotated cross-modal correspondence is faultless. In prac-
tice, however, it is daunting and even impossible to precisely
annotate all data pairs, and thus the assumption is always vio-
lated. In particular, most modern cross-modal data is crawled
from the Web [1], [12], [13]. As a result, it is inevitable to
wrongly treat some unrelated pairs (i.e., False Positives, FPs)
as associated, leading to the so-called Noisy Correspondence
(NC, see Fig. 1(a)) problem. Although the importance of com-
bating NC is obvious, there are only a few studies have been
conducted [14], [15]. To alleviate the influence of NC, these
works try to model the association confidence of positive pairs,
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and accordingly down-weight and even discard the unconfident
pairs. Namely, these unconfident pairs are probably FPs which
will mislead the model optimization.

Although these works have achieved promising perfor-
mance, we observe that they ignore the complexity of
real-world data to some extent. Specifically, the consistency
could be identical to the correspondence only for true positives
and true negatives, while being remarkably different for false
positives and false negatives. As shown in Fig. 1(b), even
though two given data points are unassociated as annotated
(i.e., negative), they could be with concrete, implicit, or partial
consistency. Clearly, such a diverse potential consistency could
be utilized to boost the performance of NC-contaminated
models, which however has not been explored so far to the
best of our knowledge.

Based on the above observation, we propose Consistency
REfining And Mining (CREAM) for robust CMR by rectifying
possible noisy correspondence in the positive bank and exploit-
ing the diverse potential consistency in the negative bank. Our
CREAM embraces the following two merits. On the one hand,
it is able to prevent the model from fitting FPs, thus enjoying
robustness against NC. On the other hand, it complements
the consistency in negatives so that the CMR performance
could be further boosted. In detail, CREAM first computes
the association confidence for each data pair resorting to the
memorization effect [16] of Deep Neural Networks (DNNs).
Based on the estimated confidence, CREAM partitions the
pairs into clean, vague, and noisy groups for consistency
refining and mining. After that, CREAM will recalibrate the
correspondence of positives while mining and exploiting the
consistency of negatives. With the recast consistency, CREAM
employs a novel contrastive loss to achieve robust CMR
against noisy correspondence.

The contributions and novelties of this work could be
summarized as follows:

• For the first time, we reveal that the correspondence
and consistency cannot be simply treated as identical for
the cross-modal pairs. Such a new observation is largely
ignored by existing works, which however could boost
the CMR performance.

• With our observation, we propose a novel CMR method
(dubbed CREAM) that achieves robustness against the
NC through consistency refining and mining. On the
one hand, CREAM could rectify the correspondence of
positive pairs, thus preventing overfitting to NC. On the
other hand, CREAM could mine and exploit the diverse
potential consistency rooted in negative pairs.

• Extensive experiments on three widely-used CMR bench-
marks (Flickr30K, MS-COCO, and Conceptual Captions)
verify the effectiveness of our method compared with six
state-of-the-art methods.

• Beyond robustness against the instance-level image-
text NC, the experiments on the graph matching task
across three benchmarks (Willow Object, Pascal VOC,
SPair-71k) further validate the effectiveness and gen-
erality of our method in handling the fine-grained
patch-level NC.

II. RELATED WORK

In this section, we briefly review some recent develop-
ments in four related areas, i.e., cross-modal retrieval, learning
with noisy labels, learning with noisy correspondence and
contrastive learning.

A. Cross-Modal Retrieval

CMR [2], [5], [8], [17], [18], [19] aims to search semantic-
relevant samples from different modalities, wherein the key
is to alleviate the modality gap. For this purpose, existing
CMR methods mainly focus on exploiting the cross-modal
consistency hidden in the correspondence of associated pairs,
so that different modalities could be bridged. According to the
strategy of exploiting consistency, the existing CMR works
could be roughly categorized into the following two groups:
i) Coarse-grained CMR methods [20], [21], [22], which adopt
different backbones to exact modality-specific features and
align those features from a global perspective. ii) Fine-grained
CMR methods [2], [8], [17], [23], which narrow the modal-
ity gap through designing different fine-grained consistency
measurements such as multi-level attention [2] and similarity
graph [8], [17]. Although promising performance has been
achieved, most existing methods would suffer from perfor-
mance degradation when encountering noisy correspondence
as verified in the empirical results.

B. Learning With Noisy Labels

The most relevant paradigm to noisy correspondence might
be learning with noisy labels (LNL) [24], [25], [26], [27],
[28] which has attracted a lot of attention from both aca-
demic and industrial community. Most of the existing LNL
works [29], [30], [31], [32] mainly focus on combating noisy
annotations in the classification task, thus learning a robust
classifier. Different from the instance-level annotation error
of standard noisy labels, noisy correspondence refers to the
pairwise association error in the cross-modal pairs, i.e., some
mis-associated pairs are wrongly regarded as positive pairs.
Clearly, the significant paradigm difference prohibits the exist-
ing label noise methods from handling noisy correspondence
in cross-modal retrieval. Therefore, it is desirable to develop
customized methods for learning with noisy correspondence.

C. Learning With Noisy Correspondence

Noisy correspondence refers to the mismatched pairs while
being wrongly treated as associated, drawing considerable
attention from the community. Given that many tasks and
applications require data pairs as input, customizing task-
specific methods against noisy correspondence has emerged
as a promising direction across numerous applications includ-
ing but not limited to cross-modal retrieval [14], [15], [33],
[34], person re-identification [35], [36], graph matching [37],
multi-view clustering [38], [39], image-text pre-training [40],
audio-visual action recognition [41], image captioning [42].

Among the aforementioned works, the most related
works could be the NC-robust cross-modal retrieval ones.
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Fig. 2. Overview of the proposed CREAM (best viewed in color). Given paired image-text data, based on the memory effect of DNNs, CREAM first
partitions the pairs into three types, namely, clean (green), vague (yellow), and noisy (red). After that, CREAM refines consistency for positive pairs (the
strength is indicated by thickness) to alleviate the influence of NC, while mining consistency between some correlated negative pairs (denoted by dash line)
to boost the CMR performance. Finally, with the recast consistency, CREAM adopts a novel contrastive loss, which modulates the gradient for different types
of positive pairs and reverses the gradient for some negative pairs, leading to robust CMR against NC.

Different from them, we reveal that the correspondence is not
always in accord with the consistency, especially for the false
positive and false negative pairs. Based on this observation,
CREAM achieves robustness against NC through consistency
refining and mining. On the one hand, CREAM employs a
collaborative learning paradigm to rectify the correspondence
of positives, so that the overfitting on FPs is eliminated. On the
other hand, CREAM explores and exploits the diverse potential
consistency, thus boosting the performance.

D. Contrastive Learning

The contrastive learning paradigm has achieved state-of-the-
art performance recently in representation learning [43], [44],
[45], [46], [47]. The basic idea of contrastive learning is to
maximize the similarities of positive pairs while minimizing
those of negative ones. In single-modal contrastive learning,
pairs are constructed through data augmentations, such as
random crop and color distortion [43]. Samples augmented
from the same instance are treated as positive, while other
samples in the mini-batch [43] or memory bank [44], [48] are
considered as negative. In multi-modal contrastive learning,
pairs are constructed based on the correspondence between
cross-modal samples [12], [13], [49], [50]. With the pairing
information crawled from the Internet or annotated by humans,
only paired cross-modal data is defined as positive and others
are treated as negative.

The instance-level discrimination nature of contrastive
learning is favored for CMR. In this work, we propose a
novel contrastive loss that significantly differs from existing
cross-model contrastive learning works in the following two
aspects. On the one hand, considering FPs in CMR, we rectify
the weight for positive pairs to alleviate the influence of noisy
correspondence. On the other hand, instead of treating all
unpaired samples as absolutely negative, we propose to mine
the hidden associations in the unpaired data. Such an operation
helps the model to capture more cross-modal consistency
information, which further boosts the performance.

III. METHOD

In this section, we elaborate on the proposed CREAM
which consists of two modules, together with a novel

objective function to achieve robust cross-modal retrieval
against noisy correspondence. Section III-A introduces the
Collaborative Data Partition (CDP) module which divides
data pairs into three subsets based on the memory effect of
DNNs. Section III-B introduces the Consistency Refining and
Mining (CRM) module which recast the consistency from
two aspects. Section III-C details the proposed objective
function to achieve Robust Cross-modal Retrieval (RCR).
The framework of CREAM is shown in Fig. 2.

A. Collaborative Data Partition

We first formulate the cross-modal retrieval task as follows
by taking image-text matching as an example. Given N cross-
modal image-text pairs {(Ii , Ti ), yi }

N
i=1, cross-modal retrieval

aims to build correlations between image and text samples
in the unlabeled test set, where yi ∈ {0, 1} is the annotated
correspondence indicating whether the i-th image Ii and i-th
text Ti belong to the same instance. Cross-modal retrieval with
noisy correspondence considers a more challenging setting
where an unknown portion of data pairs is mismatched.
Namely, some pairs (Ii , Ti ) are intrinsically negative (i.e.,
yi = 0) but are wrongly labeled as positive (i.e., yi = 1).

To tackle such a problem, CREAM first identifies those
mislabeled pairs by observing their patterns in pair similarities.
Specifically, let f (·) and g(·) be the feature extractors for
images and text respectively, the pair similarity is measured
by the cosine distance s( f (Ii ), g(Ti )) in the feature space,
which we abbreviate as s(i, i) for simplicity in the following.
Some pioneer works [16] have shown that DNNs are apt to
learn clean patterns first, and then gradually fit noisy ones,
which is the so-called memorization effect. Motivated by this
empirical finding, it is possible to distinguish clean and noisy
pairs by their different patterns in losses. In this work, the loss
for each image-text pair is defined by the vanilla cross-modal
InfoNCE [12] as follows,

li = − log
exp (si,i/τ)∑N

j=1 exp (si, j/τ)
− log

exp (si,i/τ)∑N
j=1 exp (s j,i/τ)

,

(1)

where τ = 0.07 is the temperature parameter fixed in all our
experiments.
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To distinguish clean and noisy pairs, we fit the losses
of all pairs by a two-component Gaussian Mixture Model
[24], [51], namely,

P(l |θ) = α1φ(l |θ1) + α2φ(l |θ2) , (2)

where αk and φ(l |θk) denote the mixture coefficient and
the probability density of the k-th component, respectively.
According to the DNNs’ memorization effect, the component
with a smaller mean value corresponds to clean pairs, and the
other component corresponds to noisy ones. The probability
of pair i belonging to the clean component is calculated by
the posterior probability as

pi = P(θk |li ) = P(θk)P(li |θk)/P(li ). (3)

To improve the accuracy of pair partition, we design a
collaborative partition scheme. To be specific, we construct
two identical models A = { f A, gA} and B = { fB, gB} with
different random initialization. After warming up networks A
and B by minimizing Eq. 1 for all pairs, we could obtain the
probability of the i-th pair being clean from each network,
denoted as pA

i , pB
i . Further, pair i is considered clean by

network A(B) if pA(B)
i > γ and vice versa, where the

threshold γ is set to be 0.5 in our experiments for simplicity.
Based on the agreement of two DNNs, we partition all pairs
into three groups as follows:

(Ii , Ti ) ∈


Dc, p̂A

i + p̂B
i = 2,

Dv, p̂A
i + p̂B

i = 1,

Dn, p̂A
i + p̂B

i = 0,

p̂A(B)
i =

{
1, pA(B)

i > γ,

0, pA(B)
i ≤ γ,

(4)

where Dc, Dv , and Dn refer to the clean, vague, and noisy
set, respectively. In other words, the pair would be regarded
as clean/noisy i.f.f. both/neither of the two DNNs agree that
the pair is highly-confident. For the rest pairs, they would be
treated as vague due to the disagreed judgment between the
two DNNs.

B. Consistency Refining and Mining

After partitioning data pairs into three groups, we apply
different strategies to recast the consistency based on the
characteristics of each group. The consistency recast is con-
ducted dually and composed of consistency rectification for
positive pairs as well as consistency mining for some negative
pairs.

1) Consistency Refining: Consistency refining aims to recal-
ibrate the correspondence of false positive pairs so that
their consistency could be properly embedded. For the clean
split Dc, the original correspondence is likely to be correct, and
thus we slightly reduce the correspondence intensity with the
clean confidence pi . To prevent error accumulation, we swap
the probability score between networks A and B, leading to
the following formulation, i.e.,

y′A
ci

= pB
i yi + (1 − pB

i )ŷ A
i ,

y′B
ci

= pA
i yi + (1 − pA

i )ŷB
i , (5)

where ŷ A and ŷB denote the current predictions from networks
A and B respectively, which are computed by the bi-directional
retrieval results as follows (similar for ŷB),

ŷ A
i =

1
2

[
ŷ A

i2t + ŷ A
t2i

]
=

1
2

[
exp (s A

i,i/τ)∑N
j=1 exp (s A

i, j/τ)
+

exp (s A
i,i/τ)∑N

j=1 exp (s A
j,i/τ)

]
. (6)

For the vague split Dv , the original annotated correspon-
dence is not as reliable as those in the clean split. Accordingly,
we lower the intensity of the original correspondence by
averaging of clean confidences from two DNNs, and the
rectified correspondence is defined as

y′A(B)
vi

=
pA

i + pB
i

2
yi +

(
1 −

pA
i + pB

i
2

)
ŷ A(B)

i . (7)

For the noisy split DN , since the annotated correspondence
is no longer reliable, we average the current prediction from
two DNNs as the rectified correspondence, namely,

y′A(B)
ni

=
ŷ A

i + ŷB
i

2
. (8)

2) Consistency Mining: Besides refining consistency of
positive pairs, we mine the potential consistency rooted in neg-
ative pairs and establish correspondence for them accordingly.
Specifically, the consistency mining is performed within each
branch of networks A and B independently. For conciseness,
we omit the mark A(B) in the following. The intensity of
correspondence established on negative pairs is determined by
the rectified value of the anchor and pair-wise similarities in
the feature space. Specifically,

wi2t
i, j = (1 − y′

i )
si, j∑N

k=1,k ̸=i si,k
,

wt2i
i, j = (1 − y′

j )
si, j∑N

k=1,k ̸= j sk, j
, (9)

where y′

i( j) is the refined correspondence, wi2t
i, j and wt2i

i, j denote
the consistency between cross-modal sample i and j in image-
to-text and text-to-image retrieval, respectively.

Next, instead of building correspondence between all neg-
ative pairs, we sieve out those pairs with relatively low
consistency. Such a filtering operation encourages the network
to focus on reliable consistency, which is more likely to benefit
the CMR model optimization as verified in our experiments.
The threshold for filtering is designed in a data-driven manner,
namely,

β =
1
N

(
ȳ′

c Nc + ȳ′
v Nv + ȳ′

n Nn
)
, (10)

where Nc, Nv , and Nn denote the number of pairs in the clean,
vague, and noisy split (s.t. Nc + Nv + Nn = N ), respectively.
In practice, we filter those negative pairs with similarity lower
than the threshold β, namely,

ŵi2t
i, j =

{
0, if wi2t

i, j < β,

wi2t
i, j , else,

(11)
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and ŵt2i
i, j is filtered similarly, namely, the finally estab-

lished correspondence for negative pairs. Such a design
could adaptively adapt to different ratios of noisy correspon-
dence. Concretely, when the noise ratio is low, most of the
cross-modal sample pairs would be regarded as clean, and
thus the computation of Eq. 10 would be dominated by pairs
in the clean split. Accordingly, the filtering threshold would be
high, which could tighten the correspondence establishment.
On the contrary, under a high noise rate, the filtering threshold
would be reduced by noisy pairs. As a result, a low threshold
would allow the model to mine more potential consistency in
the negative bank to complement the lost consistency caused
by noisy pairs. For a comprehensive understanding of our
adaptive filtering threshold, we present some analytical studies
on the experiments.

C. Robust Cross-Modal Retrieval

Given the recast consistency, i.e., rectified correspondence
for positive pairs and newly established correspondence for
negative pairs, we propose the following objective function
for robust cross-modal retrieval, i.e.,

L = L p +
1
2

[
L i2t

n + L t2i
n

]

=
1
N

N∑
i=1

y′

i li +
1

2N

 N∑
i=1
i ̸= j

−ŵi2t
i, j log

exp (si, j/τ)∑N
k=1 exp (si,k/τ)

+

N∑
j=1
j ̸=i

−ŵt2i
i, j log

exp (si, j/τ)∑N
k=1 exp (sk, j/τ)

 , (12)

where L p, L i2t
n , and L t2i

n denote the loss for refined positive
pairs and bi-directional negative pairs in cross-modal retrieval,
respectively. With the above loss design, the model could
alleviate the influence of false positive pairs and exploit the
potential consistency rooted in some negative pairs, leading to
robust cross-modal retrieval against noisy correspondence.

IV. EXPERIMENTS

In this section, we verify the robustness of CREAM against
the instance-level image-text NC and the more fine-grained
patch-level NC. To this end, we conduct extensive experiments
on both the image-text retrieval and graph matching tasks
across six benchmarks. The organization of this section is
as follows. In Section IV-A, we elaborate on the experi-
ment settings including datasets and implementation details.
In Section IV-B, we carry out extensive experiments on
three benchmarks to evaluate the effectiveness of CREAM.
In Section IV-C, we conduct detailed ablation studies to
investigate the effects of each module. In Section IV-D,
we perform a series of analytical experiments to give a
comprehensive understanding of CREAM. In Section IV-E,
we extend CREAM to the graph matching task and verify
its effectiveness on handling the fine-grained patch-level NC.
Due to the space limitation, we present more results in the
Appedix.

A. Experiment Settings

In this section, we elaborate on the experiment settings
including the used datasets and implementation details.

1) Datasets: The detailed descriptions of the used datasets
are presented as follows.

• Conceptual Captions 3M [1]: This is a large-scale
web-harvested dataset consisting of approximately 3.3M
image-caption pairs [1]. In the experiment, follow-
ing [14], we use a randomly-selected subset of Con-
ceptual Captions 3M for evaluation, named CC152K.
CC152K contains 150K pairs for training, 1K pairs for
validation, and 1K pairs for testing.

• Flickr30K [52]: The dataset contains 31K images
collected from the Flickr website. Each image has 5 man-
ually annotated captions. As a result, there are 155K
image-text pairs in the datasets. Following [2], we use
5K pairs for validation, 5K pairs for testing, and 145K
pairs for training.

• MS-COCO [53]: The dataset consists of 123,287 images,
and each image is annotated with 5 text descriptions.
Therefore, there are 616,435 image-text pairs in the
dataset, which is split into 566,435 pairs for training,
25K pairs for validation (as it is slow to validate on 25K
pairs, only 5K pairs are used in all experiments), and the
rest 25K for testing. Following [2], we use two kinds
of evaluation protocols, namely, 5 fold of 1K test images
and full 5K test images. The results are reported by either
averaging over 5 folds of 1K test images (denoted by
MS-COCO 1K) or testing on the full 5K test images
(denoted by MS-COCO 5K).

• SPair-71k [54]: The dataset comprises 70,958 image
pairs covering a total of 18 classes. These image pairs
exhibit diverse variations in viewpoint thus suffering from
noisy correspondence between keypoints.

• Pascal VOC [55]: The dataset comprises 7,020 images
allocated for training and 1,682 for testing, covering a
total of 20 classes. Each image contains a varying number
of keypoints, ranging between 6 and 23.

• Willow Object [56]: The dataset includes 256 images
across 5 categories, each annotated with 10 distinctive
landmarks. Follow [37], we train our CREAM on the
initial 20 images and test on the remaining set.

Our primary focus lies in validating CREAM’s effectiveness
within the image-text retrieval task, leaving the exploration of
its extension to the graph matching task in the last. For exten-
sive evaluations, we conduct experiments on both simulated
and real-world NC-contaminated datasets. Specifically, for the
well-annotated Flickr30K [52] and MS-COCO [53] datasets,
following NCR [14], we simulate the NC by randomly shuf-
fling the text of training images in a specific percentage, which
is denoted as noise ratio. As for CC152K [14], it is reported to
have 3% – 20% mismatched pairs (i.e., NC off-the-shelf) since
the data pairs are harvested from the Web [1]. Following [15],
we use the widely-used CMR metrics, i.e., Recall@1 (R@1),
Recall@5 (R@5), Recall@10 (R@10), and their sum (denoted
as R-sum) for the performance measurement.

2) Implementation Details: The proposed CREAM is a gen-
eralized NC-robust framework that could be adapted to most
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existing CMR models. In the main experiments, we endow the
recently-proposed CMR baseline, SGR [8], with robustness
against NC. In brief, we maintain the backbone of SGR and
train it using the proposed framework. Specifically, follow-
ing [2] and [8], the off-the-shelf Faster-RCNN [57] is used
to extract the features of each image and obtain 36 feature
vectors of regions of interest (ROI) for backbone training, and
each vector is with 2048 dimensions. Each caption is first
processed by word embedding with the size of 300, then fed
into Bi-GRU [58] whose hidden state number is 1024.

In our implementation, we first randomly initialize two SGR
models and warm up the models using Eq. 1 for better net-
work initialization. Notably, the existing NC-oriented methods
[14], [15] also adopt the warm-up strategy while the warm-up
epoch varies from different datasets or noise ratios. In this
work, the warm-up stage would continue as long as all the
metric values on the validation set are increasing, and the
maximum warm-up epoch is set as 5. Clearly, our strategy
could avoid the labor-intensive tuning on the warm-up epochs.
After the warm-up stage, the ROIs features of images and
features of captions are fed into both two models for training.
The models are trained under the proposed framework, i.e.,
CREAM with a batch size of 128, and both models share
the same data within a single batch. For better data partition,
we first use the divided clean data only, and then gradually add
the divided vague and noisy data as the training proceeds. For
network parameter updating, we use the Adam optimizer [59]
with default parameters.

To ensure the practicability of our CREAM, we use the final
checkpoints for evaluation instead of using the best check-
points in the validation set. In the inference stage, we average
the predictions of model A and model B as the final predic-
tion for evaluation. All the experiments and evaluations are
performed on Ubuntu OS with GeForce RTX 3090 GPUs.

B. Comparisons With State of the Arts

To verify the effectiveness of CREAM, we compare
CREAM with six image-text retrieval baselines including
SCAN [2], IMRAM [23], SAF [8], SGR [8], NCR [14],
and DECL [15]. Among them, the former four baselines are
the standard CMR baselines, while NCR and DECL are the
existing NC-robust CMR methods. For comprehensive com-
parisons, besides the results on the CC152K dataset, we vary
the noise ratio of Flickr30K and MS-COCO datasets from 20%
to 80% with an interval of 20% to simulate more NC scenarios
and report the results. The results on the CC152K, Flickr30K,
MS-COCO 1K are summarized in Tables I, II and III, respec-
tively. According to the results, one could have the following
observations and conclusions. First, with the increasing noise
ratio, our CREAM performs relatively stable, whereas the stan-
dard CMR baselines encounter remarkable performance degra-
dation, verifying the necessity of developing the NC-robust
CMR method. Second, compared to existing NC-robust meth-
ods (DECL [15], NCR [14]), our CREAM still achieves
promising performance improvement. For example, on the
real-world NC-contaminated dataset (CC152K), CREAM
improves the “R-Sum” by 4.8% and 7.3% compared to NCR

TABLE I
EXPERIMENT RESULTS ON CC152K. THE BEST AND SECOND

BEST RESULTS ARE HIGHLIGHTED IN BOLD AND
UNDERLINE, RESPECTIVELY

TABLE II
EXPERIMENT RESULTS ON FLICKR30K

TABLE III
EXPERIMENT RESULTS ON MS-COCO 1K

and DECL, respectively. On the simulated NC-contaminated
MS-COCO 1K dataset, CREAM achieves absolute improve-
ments of +5.7, +2.9, +6.6, +10.2 on “R-Sum” when the
noise ratio varies in the range of [20%, 40%, 60%, 80%],
comparing to the best baseline.
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TABLE IV
ABLATION STUDIES FOR CREAM ON FLICKR30K WITH 40% NOISE.

THE DEFAULT SETTINGS ARE MARKED IN GRAY

TABLE V
FINE-GRAINED ABLATION STUDIES ON THE CDP MODULE

C. Ablation Studies

In this section, we first perform a standard ablation study
to investigate the importance of each component. Then,
we conduct comprehensive fine-grained ablation studies to
investigate the effects of the CDP and CRM modules. All the
ablation studies are conducted on the Flickr30K dataset with
40% noise.

1) Ablation on Each Module of CREAM: We conduct
experiments on the following variants of CREAM by isolating
the corresponding module: i) we remove the CDP module, i.e.,
all the data pairs are regarded as clean ones; ii) we remove
the CRM module, i.e., the correspondence of clean and vague
pairs are set to be 1 while those of noisy pairs are set to be 0;
iii) we replace our loss (Eq. 12) with the loss of NCR [14]; iv)
we remove the warm-up procedure; v) we train models with
the vanilla contrastive loss (Eq. 1) only while removing the
three modules. Table IV summarizes the results and indicates
the inseparability of each component.

2) The Effect of the CDP Module: To investigate the effect
of the CDP module, we perform the following CDP variants:
i) Using the divided clean subsets for training only; ii) Merging
the clean and vague subsets; iii) Merging the noisy and vague
subsets; iv) Employing a single neural network for partition
only, i.e., self-training. The results are summarized in Table V,
where one could see that our dedicated partition strategy is
more favorable for achieving NC-robust CMR.

3) The Effect of the CRM Module: We first investigate
the effect of the consistency mining scheme (Section III-B.2)
by conducting the following variants: i) we replace the
consistency mining scheme with the vanilla label smooth
(LS) strategy; ii) we remove the consistency mining scheme;
iii) we perform CRM without the filter operation (denoted
as w/o Eq. 11). Moreover, we investigate the effect of the
consistency refining scheme (Section III-B.1) by adopting
different rectification strategies. From Table VI, one could
realize the importance of our CRM module. On the one
hand, the performance could be significantly boosted, once
the correspondence of pairs with potential consistency is
properly established in the negative bank. On the other hand,

TABLE VI
FINE-GRAINED ABLATION STUDIES ON THE CRM MODULE

Fig. 3. Retrieval performance of CREAM on the Flickr30K dataset when
adapted to SGR and SCAN with varying noise ratio.

it is necessary to design the dedicated consistency refining
scheme according to the characteristic of each subset.

D. Analytical Experiments

In this section, we first show the robustness and gener-
alizability of CREAM. After that, we visually investigate
the effectiveness of our CDP and CRM modules. Finally,
we present some false positive pairs in the dataset and
pairs with diverse potential consistency in the negative bank
detected by CREAM.

1) Robustness and Generalizability: To inverstigate the
robustness of CREAM, we conduct CREAM and its baseline
SGR [8] by varying the noise ratio from 10% to 80% with an
interval of 10%. Furthermore, to show the generalizability of
CREAM, we adapt it to another CMR baseline SCAN [2]
to evaluate the robustness against NC. Fig. 3 depicts that
both SGR and SCAN encounter a severe performance drop
as the noise ratio increases. In contrast, CREAM could endow
the two baselines with robustness against NC, demonstrating
the robustness and generalizability of the proposed CREAM.

2) Effectiveness of the CDP and CRM Modules: To
investigate how our CRM module helps to achieve robust
cross-modal retrieval, we visualize the per-sample loss dis-
tribution. The results are shown in Fig. 4(a)-(c) One could
observe that after warmup, the losses for clean, vague, and
noisy samples show different patterns, which proves the
effectiveness of our CDP module. After training, the model
successfully fits clean and vague samples to different extents,
while not being influenced by those noisy samples. Such a
result indicates that CRM achieves robustness against NC.

Noticed that in consistency mining, we design an adaptive
filter to automatically handle different noisy ratios. To illus-
trate how the filter works, we visualize the weight distribution
for samples in the negative bank and the corresponding
filtering thresholds in Fig. 4(d). As shown, the weights are
generally larger under a lower noise ratio, since the model
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Fig. 4. (a)-(c): The per-sample loss distribution on the Flickr30K dataset
with 40% noise ratio across the training process. (d) The weight distribution
and the computed thresholds on the Flickr30K dataset under different noise
ratios.

TABLE VII
PERFORMANCE ON THE FLICKR30K DATASET EMPLOYING THE

STATE-OF-THE-ART VISION TRANSFORMER BACKBONE

learns better cross-view consistency from more true positive
pairs. Accordingly, CREAM computes a stricter threshold
following Eq.10. The results indicate that CREAM could
always mine the most reliable consistency in the negative bank
under different noise ratios.

3) Compatibility of CREAM Across Various Feature Extrac-
tors: To investigate the compatibility of CREAM with
different extractors, in this section, we use the state-of-the-
art vision transformer model, EVA [60], [61], [62], as the
visual feature extractor. Specifically, we replace the default
Faster-RCNN extractor of SGR with the EVA model, and
perform experiments using SGR, NCR and CREAM. From
Table VII, one could observe that our CREAM still achieve
superior performance than NCR and SGR, implying the com-
patibility of cream across different feature extractors. Note
that, using the EVA model would slightly decrease the per-
formance compared to the Faster-RCNN counterpart although
EVA is the SOTA backbone for image classification. The
reason could be attributed to the prior information acquired
by the Faster-RCNN. More specifically, Faster-RCNN could
extract the fine-grained object information which would benefit
the cross-modal semantic similarity measurement. In con-
trast, EVA could only extract the coarse-grained semantic
information.

Fig. 5. Case study. (a) Consistency refined for FPs. (b) Consistency mined
from the negative bank. Values denote the consistency predicted by our model.

TABLE VIII
KEYPOINT MATCHING AVERAGE ACCURACY FOR ALL CLASSES (%)

4) Case Study: To give a more intuitive understanding of
the necessity of consistency refining and mining, we pro-
vide some cases from CC152K [14] in Fig. 5. On the one
hand, some image-text pairs are wrongly matched (i.e., FPs).
CREAM correctly detects those pairs and refines their con-
sistency to prevent them from misleading the optimization.
On the other hand, despite the annotated pair, we find that
there exists diverse potential consistency in the negative bank
(e.g., partial consistency in text 2–4, and implicit consistency
in text 5). Mining that hidden consistency could further boost
CREAM’s performance in cross-modal retrieval.

E. Extension to the Graph Matching Task

Graph matching aims to establish the fine-grained corre-
spondence between the keypoints of given semantic-relevant
images/graphs. As pointed by COMMON [37], it is inevitable
to wrongly annotate the key point, resulting in noisy corre-
spondence between keypoints. In this section, we investigate
the effectiveness of our CREAM in handling such fine-grained
noisy correspondence challenge. To this end, we choose
the SOTA graph matching method, i.e., COMMON, as our
baseline model. More specifically, we keep the backbone of
COMMON and train it using our framework. Table VIII sum-
marize the main comparison results between nice SOTA graph
matching baselines with our CREAM. More comprehensive
results could be accessed in the Appendix. As the results
suggested, CREAM performs competitively or even achieves
promising performance improvement compared to the existing
graph matching baselines, although CREAM is not dedicatedly
designed for this task. The performance superiority showcase
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TABLE IX
EXPERIMENT RESULTS ON MS-COCO 5K

the generality of CREAM from the instance-level image-text
NC to the patch-level keypoint NC.

V. CONCLUSION

In this paper, we study a practical but less-touched prob-
lem in cross-modal retrieval and graph matching tasks, i.e.,
noisy correspondence. To learning with noisy correspondence,
we propose CREAM that achieves robustness through the
consistency rectifying and mining paradigm. Extensive exper-
iments on both the image-text retrieval and graph matching
tasks across multiple benchmarks verify the effectiveness of
CREAM in handling both the instance-level NC and fine-
grained patch-level NC. In the future, we plan to extend our
observation and method to other multi-modal applications such
as video analysis, image captioning, and so on.

APPENDIX

In the appendix, we present more experiments results to
provide comprehensive evaluations of our method. The results
includes the experiments on the setting of MS-COCO 5K,
more analytical experiments, more ablation experiments, more
case studies, and the comprehensive comparison results of the
graph matching task.

A. Experiment Results on MS-COCO 5K

We have compared CREAM with the state-of-the-art meth-
ods on Flickr30K, CC152K and MS-COCO 1K in our
manuscript (Section IV-B). Here, we show the experiment
results on MS-COCO 5K with noise ratio varying in the range
of [20%, 40%, 60%, 80%]. From Table IX, one could see that
CREAM has improved R-Sum under different noise ratios.

B. More Analytical Experiments

To verify the effectiveness of the CDP and CRM modules,
we have conducted experiments on the Flickr30K dataset in the
manuscript (Section IV-D.2). Here, we give more experiment
results on MS-COCO under the same experiment settings. The
results are visualized in Fig. 6.

Fig. 6. (a)-(c): The per-sample loss distribution on MS-COCO dataset with
40% noise ratio across the training process. (d) The weight distribution and
the computed thresholds on MS-COCO under different noise ratios.

TABLE X
FINE-GRAINED ABLATION STUDIES ON THE FLICKR30K DATASET

USING SINGLE GMM FOR DATA PARTITION

TABLE XI
KEYPOINT MATCHING ACCURACY (%) ACROSS ALL

OBJECTS ON WILLOW OBJECT

From Fig. 6(a)-(c), one could see that after networks ini-
tialized, the clean, vague and noisy samples are mixed up.
Then, after warmup, the CDP module could divide samples
into three components to some degree according to those two
neural networks. After training, noisy samples are far away
from clean and vague samples and most of clean samples are
well learned. Those two networks are not influenced by noisy
samples, which shows the effectiveness of CRM module.

Noticed that we have designed an adaptive filter β to
help the network select more reliable consistency, which
would benefit the optimization of CMR module. As shown
in Fig. 6(d), we visualize the distribution of weights and
the corresponding filtering thresholds on MS-COCO. The
behavior of our method on MS-COCO is consistent with that
on Flickr30K. The results indicate that CREAM could always
using the most reliable consistency for optimization.

C. More Ablations

To further investigate the effect of our collaborative data
partition module, we perform more fine-grained ablation
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TABLE XII
KEYPOINT MATCHING ACCURACY (%) ON PASCAL VOC WITH STANDARD INTERSECTION FILTERING

TABLE XIII
KEYPOINT MATCHING ACCURACY (%) ON SPAIR-71K FOR ALL CLASSES

Fig. 7. Case studies on mined consistency using images as queries. The
first caption of each query is the ground truth, and the value denotes the
consistency predicted by our model.

studies by adopting only one neural network to divide the
dataset. From the Table X, one could observe that employing
a single network with GMM modeling of three components
would decrease the performance compared to our default
data partition module. It could be attributed to the error
accumulation by such self-training manner.

D. More Case Studies

In the manuscript, we have given some case studies for a
comprehensive understanding of our method (Section IV-D.4).
Here, we give more case studies about the consistency mined

Fig. 8. Case studies on mined consistency using captions as queries. The
ground truth image of each query is framed in green, and the value denotes
the consistency predicted by our model.

in the negative bank by our method. The results are presented
in Fig. 7 and Fig. 8, where the former uses images as queries
while the latter uses captions as queries. From the results,
one could see the powerful ability of mining consistency of
our method, which would boost the performance of cross-
modal retrieval. Note that, as shown in Fig. 8 (d), our method
explores some diverse potential consistency while refining the
incorrect correspondence for the ground truth, which could
benefit achieving robust cross-modal retrieval.

E. Comprehensive Results of Graph Matching Experiments

In the manuscript, we summary the average keypoint
matching accuracy on Willow Object, Pascal VOC and
SPair-71k (Section IV-E). Here, in Table XI, Table XII and
Table XIII, we show the complete results for all classes in
those three datasets, respectively. One could see that CREAM
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achieves competitive results among SOTAs, which proves the
generalizability of CREAM to the graph matching with noisy
correspondence problem.
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