
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1
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Abstract— A variety of single-cell RNA-seq (scRNA-seq) clus-
tering methods has achieved great success in discovering cellular
phenotypes. However, it remains challenging when the data
confounds with batch effects brought by different experimental
conditions or technologies. Namely, the data partitions would be
biased toward these nonbiological factors. Meanwhile, the batch
differences are not always much smaller than true biological
variations, hindering the cooperation of batch integration and
clustering methods. To overcome this challenge, we propose
single-cell RNA-seq debiased clustering (SCDC), an end-to-end
clustering method that is debiased toward batch effects by
disentangling the biological and nonbiological information from
scRNA-seq data during data partitioning. In six analyses, SCDC
qualitatively and quantitatively outperforms both the state-of-
the-art clustering and batch integration methods in handling
scRNA-seq data with batch effects. Furthermore, SCDC clusters
data with a linearly increasing running time with respect to cell
numbers and a fixed graphics processing unit (GPU) memory
consumption, making it scalable to large datasets. The code will
be released on Github.

Index Terms— Batch integration, clustering, single-cell RNA
analysis.

I. INTRODUCTION

CLUSTERING analysis plays an important role in dis-
covering and defining cell types based on the tran-

scriptome [1], which aims to group cells according to their
similarities without accessing ground truth cell types. To han-
dle high-dimensional single-cell RNA-seq (scRNA-seq) data,
a classic pipeline is first using principal component anal-
ysis (PCA)-like methods to reduce the dimension of the
data, followed by clustering methods such as k-means [2],
SC3 [3], Mpath [4], and single-cell interpretation via multik-
ernel learning (SIMLR) [5]. Motivated by the recent success
of deep learning in biological applications such as cell-type
detection [6], [7], signal and state estimation [8], [9], drug
repurposing [10], molecular generation [11], and protein com-
plexes detection [12], some deep clustering methods have been
proposed recently and shown promising results in scRNA-seq
clustering, such as ItClust [13], scDEC [14], deep embedded
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scRNA-seq clustering (DESC) [15], and scDeepCluster [16]
with its semi-supervised variant scDCC [17]. However, despite
the true biological difference, variances in single-cell tran-
scriptomic data also come from nonbiological factors such as
sequencing techniques and handling laboratories, which are
so-called batch effects. Intuitively, data from different tech-
nical processing batches would have distinct patterns, which
interfere or even overwhelm the true biological variances
across different cell types as illustrated in Fig. 1(a). In this
case, the standard clustering methods might partition data
based on batch effects instead of biological information, thus
influencing the subsequent analyses.

To alleviate the influence of batch effects, several
task-agnostic batch integration studies have been conducted.
Among them, a common solution is utilizing mutual nearest
neighbors (MNNs) to capture and correct batch variations,
as adopted in MNN correct [18], batch balanced K nearest
neighbours (BBKNN) [19], Scanorama [20], scMerge [21],
and Seurat [22]. Another solution is modeling scRNA-seq
data with some probability distributions to estimate the batch
variances, as proposed in ComBat [23] and zero-inflated
negative binomial (ZINB)-WaVE [24]. In a coarse-to-fine fash-
ion, linked inference of genomic experimental relationships
(LIGER) [25] and Harmony [26] gradually remove batch
effects in an iterative fashion. Inspired by the powerful model-
ing capacity of neural networks, some deep learning methods
have been proposed recently, such as maximum mean discrep-
ancy residual neural networks (MMD-ResNet) [27], single-cell
variational inference (scVI) [28], scGen [29], and batch effect
removal using deep autoencoders (BERMUDA) [30].

Although having achieved promising results, these batch
integration methods suffer from two limitations. On the one
hand, most of the existing methods model batch effects based
on the neighborhood structure, which heavily relies on the
assumption that batch differences are much smaller than true
biological variations [18]. Once the assumption is violated,
it would be daunting to achieve desirable results. In fact,
we find that the assumption does not always hold in practice
as shown in Fig. 1(a) and (b). On the other hand, almost all
existing batch integration methods are clustering-agnostic and
solely designed for batch effect removal, which might mistak-
enly deplete or enrich certain cell types [15]. Iterative methods
[25], [26] partly solve this problem, but errors would accu-
mulate during the alternation between batch correction and
clustering.

The above limitations arouse the need for a new scRNA-
seq data-processing paradigm which could: 1) remove batch
effects without the prior assumption on batch differences and
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Fig. 1. Illustration of batch effects. (a) UMAP visualization of scRNA-seq data from the human pancreas dataset. Samples are colored according to the
intrinsic cell types and sequence batches in the left and right figures, respectively. As can be seen, nonbiological batch effects interfere or even overwhelm
the biological variances, e.g., Alpha cells from different batches forms four distinct clusters, and their gaps are even larger than the gap between Alpha
and Gamma cells from the same batch. In this case, clustering methods are likely to group samples based on sequence batches instead of cell types, which
influences the subsequent analyses. (b) Cosine similarity between cells from batch 5 (GSE81608) and the other four batches (GSE84133, E-MATB-5061,
GSE85241, GSE83139) on the human pancreas dataset. Alpha, beta, delta, and gamma Cells are shared across these batches.

biological variations and 2) incorporate batch integration with
clustering to bootstrap each other. To this end, we present
SCDC, a scRNA-seq debiased clustering method that disen-
tangles biological and nonbiological variations from scRNA-
seq data, resulting in a data partition robust to batch effects.
The ideas behind SCDC are twofold. First, it is possible
to disentangle the biological information for clustering since
scRNA-seq data is a joint manifestation of biological variances
and batch effects. Notably, SCDC does not make any implicit
or explicit assumption on batch differences and biological
variations like existing methods, thus enjoying higher appli-
cability. Second, it is feasible to perform disentanglement
by utilizing the within-batch invariance, i.e., though varying
across batches, batch effects are similar across cells from the
same batch (to distinguish the concept of sequence batch here
with the data batch in deep learning, we denote the latter
as mini-batch in this article). Notably, such an idea holds
in most cases since a batch of data is sequenced using the
same protocol under similar experimental conditions. Based on
the above ideas, we design an end-to-end framework-dubbed
SCDC which simultaneously achieves clustering and batch
effect removal, overcoming the aforementioned limitations of
existing methods. In brief, two encoders are used to extract
cell type and batch information from the raw scRNA-seq data.
To achieve the disentanglement, SCDC: 1) forces the biolog-
ical information to be compact by directly predicting cluster
assignments and 2) randomly shuffles batch information within
each batch and reconstructs each cell with its own cell-type
information and the shuffled batch information. Once the batch
effects are disentangled, clustering could be correctly achieved
based on the biological variations (i.e., cell types). Different
from most existing methods that conduct batch effect removal
and clustering separately, our SCDC directly outputs the clus-
ter assignments given the batch-effected scRNA-seq data. Such
an end-to-end paradigm overcomes the clustering-agnostic and
error accumulation problem encountered by existing methods,
leading to superior clustering performance for batch-effected
data. Another advantage of SCDC is that it takes linearly
increasing running time and a constant graphics processing

unit (GPU) memory consumption, enjoying high scalability to
large-scale data. The main contributions of this work are as
follows.

1) This is one of the few studies on clustering scRNA-seq
data with batch effects. Different from existing methods
that take the assumption of batch differences and biolog-
ical variations, our SCDC builds upon a more practical
observation that batch effects are similar across cells
from the same batch, thus enjoying higher applicability.

2) We provide a novel learning paradigm to handle batch
effects in scRNA-seq by disentangling biological and
nonbiological variations. To achieve the disentangle-
ment, we design a simple but effective autoencoder-like
framework which could simultaneously perform batch
effect removal and clustering in an end-to-end manner.

3) The proposed SCDC is evaluated on six benchmarks
compared with both stage-of-the-art clustering and batch
integration methods. Extensive quantitative and qualita-
tive experiments demonstrate the superiority, robustness,
and scalability of SCDC.

II. RELATED WORK

Unsupervised clustering aims to group samples into several
clusters without accessing the ground-truth labels [31], [32],
[33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43],
[44], which has been widely used in a variety of tasks includ-
ing scRNA-seq analysis for cellular phenotypes discovery.
To handle high-dimensional scRNA-seq data, early works first
reduce the dimension of the data, and then apply classic
clustering methods. For example, SC3 [3] conducts spectral
clustering at different resolutions and computes a consensus
matrix to integrate clustering results. SIMLR [5] uses multiple
kernels to measure the cell similarities and applies k-means [2]
to achieve clustering. Motivated by the success of deep clus-
tering [37], [45], [46], [47], [48], [49], some deep models
have been developed recently and shown promising results. For
example, DESC [15] optimizes a deep-embedded clustering
objective in a self-training manner. scDeepCluster [16] explic-
itly models the scRNA-seq data with the ZINB distribution
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Fig. 2. SCDC framework. SCDC is an autoencoder-like network composed of: 1) a cell-type encoder which extracts biological (i.e., cell type) information;
2) a batch encoder which captures batch information; 3) a batch discriminator which improves the discrimination of the batch information; and 4) a shared
decoder that reconstructs the raw input data using both the cell-type and batch information.

and simultaneously achieves feature representation and clus-
tering. scTAG [50] learns cell–cell topology representations
and identifies cell clusters based on a deep graph convolutional
network. However, with the growth of scRNA-seq techniques,
single-cell transcriptomic data are often confounded with
nonbiological batch effects. In this case, the standard clustering
methods might cluster data based on batch effects instead of
biological information, thus influencing subsequent analyses.

To alleviate the influence of batch effects, several
task-agnostic batch integration methods have been proposed.
A common solution is utilizing MNNs to capture and correct
batch variations. For example, MNN correct [18] selects cells
with similar neighbors to model batch effects for subsequent
correction. Scanorama [20] merges batches according to the
percentage of matching cells in the batch. Seurat [22] searches
MNN in the subspace learned by cross-batch CCA. In addi-
tion to the neighborhood information, scMerge [21] further
identifies stably expressed genes to estimate batch effects.
Another solution is modeling scRNA-seq data with Gaus-
sian [23] or ZINB [24] probability distributions to estimate
the batch variances. In a coarse-to-fine fashion, LIGER [25]
and Harmony [26] gradually remove batch effects in an iter-
ative manner. Considering the powerful modeling capacity of
neural networks, some deep learning methods have also been
proposed recently. For example, MMD-ResNet [27] adopts
a residual network to learn the mapping from one batch
to another. scGen [29] models the data with a variational
autoencoder and transfers the data distribution across batches.
scVI [28] aggregates information across similar cells and
genes to approximate the distributions for batch integration.
BERMUDA [30] utilizes the similarities between cell clusters
to align cells among different batches.

Though achieving promising results, existing integration
methods heavily rely on the assumption that the batch dif-
ferences are much smaller than the true biological variations.
However, as shown in Fig. 1(b), such an assumption not always
holds in practice, and inferior results would be achieved once

the assumption is violated. Besides, few efforts have been
made on clustering scRNA-seq data with batch effects. As a
representative, DESC [15] shows that batch effects could be
gradually removed during the clustering process, but it still
relies on the above assumption. Different from these existing
works, the proposed SCDC deals with batch effects from a new
perspective, namely, through disentangling the nonbiological
variations from the scRNA-seq data during data partitioning.
In other words, the clustering results are debiased toward batch
effects and correctly based on the biological variations (i.e.,
cell types). Note that the proposed disentanglement strategy
does not rely on the aforementioned assumption, but builds
on a more practical observation that batch effects are similar
across cells from the same batch, which provides a more
general solution to cluster scRNA-seq data with batch effects.

III. METHOD

In this section, we introduce SCDC, an end-to-end cluster-
ing model which aims at capturing the biological information
and predicting the cluster assignments of the input scRNA-
seq data. As illustrated in Fig. 2, SCDC extracts the cell
type and batch information through fC and fB , respectively.
To disentangle cell type and batch information, SCDC ran-
domly shuffles batch information within each batch. Then,
each cell is reconstructed with its own cell-type information
and the shuffled batch information through g. In addition,
SCDC utilizes a batch discriminator hB to further enhance the
batch information extraction by predicting the batch index.
After training, clustering could be directly achieved by the
argmax operation on soft cluster assignments predicted by fC .
Below, we describe each component of SCDC in detail.

A. ZINB Reconstruction for Feature Extraction

To extract features from discrete and sparse scRNA-seq data
whose variance is larger than the mean, SCDC fits them with
the ZINB distribution. Following [51], one could derive that
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the zero inflation handles the sparseness, and the negative
binomial (NB) distribution handles the discreteness and large
variances.

Theorem 1: Discrete scRNA-seq data with a variance larger
than the mean could be approximated by the NB distribution.

Proof: The probability mass function of the NB distribu-
tion is

NB(x | r, p) ≡ Pr(X = x) =
0(x + r)

x !0(r)
pr (1 − p)x (1)

where r ∈ (0, ∞) and p ∈ (0, 1) correspond to the number
and probability of successes in a sequence of i.i.d. Bernoulli
processes, respectively. The mean E(X) of the NB distribution
could be derived as follows:

E(X) =

∞∑
x=0

x
0(x + r)

x !0(r)
pr (1 − p)x

=
r(1 − p)

p

∞∑
x=1

0(x − 1 + r + 1)

(x − 1)!0(r + 1)
pr+1(1 − p)x−1

= r
(1 − p)

p
. (2)

Similarly, one could derive the variance D(X) of the NB
distribution as follows:

D(X) = E
(
X2)

− E(X)2

= r
(1 − p) + (1 − p)2

p2 − r
(1 − p)2

p2

= r
(1 − p)

p2 > E(X). (3)

Hence, the NB distribution could approximate the scRNA-seq
data that has a larger variance than the mean.

Theorem 2: The sparseness in scRNA-seq data could be
modeled by the ZINB distribution.

Proof: The probability mass function of the ZINB distri-
bution is

ZINB(x | π, r, p) = πδ0(x) + (1 − π)NB(x | r, p) (4)

where δ0(·) is the Dirac delta function and π is the inflation
parameter, which explicitly strengthens the probability of x
being zero as follows:

1 Pr(X = 0) = ZINB(x = 0) − NB(x = 0)

= π + (1 − π)pr
− pr

= π
(
1 − pr) > 0. (5)

Hence, the inflation parameter π could help model the sparse-
ness in scRNA-seq data.

To fit the raw scRNA-seq count data X = [x1, . . . , xN ]

with ZINB distribution, we propose to minimize its negative
log-likelihood with the following reconstruction loss, namely:

LZINB =
1
N

N∑
i=1

− log(ZINB(xi | πi , ri , µi ))

= πiδ0(xi ) +
0(xi + ri )

x !0(ri )

(
ri

ri + µi

)ri
(

µi

ri + µi

)xi

(6)

where πi , ri , and µi = r(1− p)/p correspond to the inflation,
dispersion, and mean parameters of the ZINB distribution,

respectively. The three parameters πi , ri , and µi are estimated
by the ZINB autoencoder. Specifically, three independent fully
connected layers Wπ , Wr , and Wµ are stacked on the feature
map di output by the last hidden layer of the decoder to
estimate

πi = sigmoid(Wπdi ) (7)
ri = exp(Wr di ) (8)

µi = diag(si ) × exp
(
Wµdi

)
(9)

where si represents the size factor which is computed during
the data preprocessing and is not a part of network parameters.

B. Disentanglement of Biological Variances
and Batch Effects

To disentangle biological variances and nonbiological batch
effects, two modifications are made to the autoencoder besides
the ZINB reconstruction. On the one hand, SCDC learns
compact biological information by directly predicting cluster
assignments. On the other hand, SCDC randomly shuffles
batch information within each batch before the reconstruction
and adopts a batch discriminator to capture batch information.
More details are provided below.

1) Gumbel-Softmax for Disentangling Biological Variances:
Let K be the target cluster number which is known in prior or
manually set, the cell-type encoder fC projects each data point
xi into a K -dimensional vector ci = fC(xi ). To represent the
cell type of a datum, ci is expected to be a one-hot vector.
However, directly applying the argmax operation would lead
to discrete variables which will break the back-propagation of
neural networks. As a solution, we use the Gumbel-Softmax
estimator [52] to compute the cell-type representation yi =

[yi1, . . . , yi K ] through

yik =
exp((log(cik) + gik)/τ)∑K

k=1 exp((log(cik) + gik)/τ)
, k = 1, . . . , K (10)

where gi1, . . . , gi K ∼ Gumbel(0, 1) and τ is a temperature
parameter to control the softness. To produce harder cluster
representations as the training progresses, we empirically set
τ = (1 − k̂/K ) ∗ 0.67 + 0.33 to gradually decay τ from 1.0 to
0.33, where k̂ is the number of nonempty clusters currently.
In addition, to stabilize the training, we apply the straight-
through trick [52], [53] on large and unbalanced datasets (i.e.,
mouse retina and mouse brain) where some types of cells are
absent in a series of successive minibatches.

2) Within-Batch Shuffling and Batch Discrimination for Dis-
entangling Batch Effects: Independent of fC , another encoder
fB is used to encapsulate the batch information through bi =

fB(xi ). By feeding the concatenation of yi and bi into the
decoder g, SCDC obtains di = g(concat(yi , bi )) which is then
used to compute πi , ri , µi in LZINB with (7)–(9). As simply
using two independent encoders would fail to disentangle the
cell type and batch information, we propose the following
within-batch shuffling and batch discrimination strategy.

Since cells from the same batch are sequenced under
similar conditions, it is reasonable to assume that the batch
information is similar across within-batch cells. Therefore,
we propose utilizing such an invariance to disentangle batch
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effects by shuffling the batch representation within each batch.
Specifically, let Bi be the batch index of cell i

d̃ i = g
(
concat

(
yi , b̃i

))
, b̃i = brand(i) (11)

where rand() randomly maps the given index i to another index
j that satisfies Bi = B j . After the within-batch shuffling, it is
expected that d̃ i could still approximate the ZINB distribution
of cell i , which leads to the shuffled ZINB loss, i.e.,

L̃ZINB =
1
N

N∑
i=1

− log
(
ZINB

(
xi | π̃ i , r̃ i , µ̃i

))
(12)

where π̃ i , r̃ i , µ̃i are estimated by b̃i via (7)–(9).
Theorem 3: The Gumbel-Softmax operation in fC and

within-batch shuffling strategy in fB could disentangle batch
effects from cluster assignments.

Proof: Without loss of generality, we take cell xi as an
example. Define H(dms

i ) be the minimal sufficient information
entropy to ensure the log-likelihood of ZINB distribution is
above a certain threshold ϵ. In other words, log(ZINB(xi )) ≤

ϵ, ∀H(di ) s.t. H(dms
i |di ) ≥ 0. The Gumbel-softmax opera-

tion with decaying temperature τ intrinsically encourage fC

to capture information H(yi ) as compact as possible, that
could cover H(dms

i ) together with the shuffled information
H(b j )( j ̸= i) captured by fB . From the view of information
theory, the optimization objective of SCDC could be formu-
lated as follows:

min H(yi ) s.t. I
(
yi , b j ; dms

i

)
= H

(
dms

i

)
. (13)

Following the chain rule, we have:

I
(
yi , b j ; dms

i

)
= I

(
yi ; dms

i

)
+ I

(
b j ; dms

i

∣∣ yi
)
. (14)

Further, since H(b j ) = H( fB(x j )) ≤ H(x j ) based on
the Markov chain and the data processing inequality [54],
combining (13) and (14), one could derive that

H(yi ) ≥ I
(
yi ; dms

i

)
= I

(
yi , b j ; dms

i

)
− I

(
b j ; dms

i | yi
)

≥ H
(
dms

i

)
− I

(
x j ; dms

i

)
= H

(
dms

i | x j
)
. (15)

Optimizing (13) leads to compact clustering information that
satisfies H(yi ) = H(dms

i | x j ). In other words, the cluster
assignments yi for cell xi would not contain batch information
shared by other within-batch cells x j . Hence, SCDC could
disentangle batch effects from cluster assignments.

To further improve the ability of fB in disentangling batch
effects, SCDC stacks a batch discriminator hB on bi to predict
the batch index of cells. Notably, such a prior is usually
available in practice. The following cross-entropy loss is
adopted to optimize fB and hB :

LCE =
1
N

N∑
i=1

− log

(
exp(pi [Bi ])∑B
b=1 exp(pi [b])

)
, pi = hB( fB(xi )).

(16)

Ablation studies in Table III show the effectiveness of
the within-batch shuffling strategy and batch discriminator in
achieving the batch effect disentanglement.

TABLE I
DATASETS WITH BATCH EFFECTS USED FOR EVALUATION

C. End-to-End Training and Clustering

With (6), (12), and (16), the overall loss function of SCDC
is defined as follows:

L = LZINB + α L̃ZINB + βLCE (17)

where α, β are two hyperparameters to weigh the losses.
In practice, we find that promising results could be achieved
by simply fixing α = 1, β = 0.01 in all experiments and no
exhaustive parameter selection is needed. The overall loss in
(17) is used to optimize the entire network including fC , fB ,
g, and hB by stochastic gradient descent [55] in an end-to-end
manner.

After the network converges, SCDC could achieve end-
to-end clustering by directly predicting the soft clustering
assignment Ci for batch effected data with the cell-type
encoder fC through

Cik =
exp(cik)∑K
j=1 exp

(
ci j
) (18)

where Cik denotes the probability of cell i belonging to cluster
k. To obtain hard cluster assignments, one could simply apply
the argmax operation on Ci .

IV. EXPERIMENTS

In this section, the clustering performance of the proposed
SCDC is evaluated on six scRNA-seq datasets with various
batch effects. Extensive quantitative and qualitative results
demonstrate its superiority, robustness, and scalability.

A. Datasets

Six batch effect datasets are used for evaluation, with a brief
description summarized in Table I. Specifically, the mouse cell
atlas and hematopoietic stem are sequenced with two different
protocols, which are used for examining the robustness against
different scRNA-seq technologies. The human pancreas and
cell line dataset are a combination of five and three differ-
ent sources, respectively, which is used for examining the
robustness against multiple batches. The mouse retina dataset
is sequenced by two unassociated laboratories, which is used
to verify the robustness against nonidentical cell types across
batches. Finally, the mouse brain dataset is used to evaluate
the scalability of the methods.

B. Implementation Details

The scRNA-seq count data is preprocessed by the
scanpy [56] package as follows. First, we normalize each cell
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TABLE II
CLUSTERING PERFORMANCE ON SIX BATCH EFFECT BENCHMARKS (MEAN ± STD). THE BEST RESULT IS DENOTED IN BOLD

Fig. 3. UMAP plots of SCDC and baselines on mouse cell atlas, cell line, and hematopoietic stem, where cells are colored by cell type and batch in the
odd and even rows, respectively.

by dividing its total number of read counts on all genes, and
then multiply them by 10 000 to ensure that total counts are
the same across cells. After that, we natural log normalize the

read counts and then selected highly variable genes (HVGs).
Finally, we scale the data to have unit variance and zero
mean.
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The cell-type encoder fC is a fully connected network
(FCN) with the dimension of M-256-64-32-32-K, where M
is the number of HVGs selected in the preprocessing stage
and K is the target cluster number. The batch encoder fB

and the batch discriminator hB are two FCNs with the
dimension of M-256-64-32 and 32-32-B, respectively, where
B is the batch number. The decoder g is also an FCN with
the dimension of (K + 32)-32-64-256. And three parame-
ter estimators Wµ, Wr , and Wπ are of dimension 256-M.
When computing LZINB and L̃ZINB, Gaussian noises are
added into the input to improve the representability of the
extracted features [57]. With a batch size of 256, we train
the network for 300 epochs using the Adam optimizer [55]
with the default parameters. All experiments are conducted
on an Nvidia RTX 2080Ti GPU with CUDA 11.0, on the
Ubuntu 20.04 OS.

All baselines are implemented based on their officially
released codes or packages. Specifically, for DESC, we use
the official desc Python package, v.2.1.1, with k-means initial-
ization. For fastMNN, the Seurat [58] preprocessing workflow
is adopted to first identify 5000 HVGs, followed by the multi-
BatchPCA operation from the Scran R package [59], v.1.21.1,
resulting in 50 principal components. After that, we use the
fastMNN function to integrate the preprocessed data. For Har-
mony, following the default setting, we select top 20 principal
components from the Seurat [58] preprocessed data, and then
fed them into the RunHarmony function from the Harmony R
package [26], v.0.99.9, with parameters θ = 2, nclust = 50,

max.iter.cluster = 100. For LIGER, we use its preprocessing
and integration functions from the liger package [25], v.1.0.0,
with recommended parameters k = 20, λ = 5. For scMerge,
we run the scMerge function from R package [21], v.1.9.0,
on the log2 normalized data, and project the output into
a 20-dimensional PCA space for clustering. For Seurat 3,
we follow the default workflow by selecting 2000 HVGs
to compute anchors and then integrating the data with the
Seurat R package [22], v.3.0.1. For efficient clustering, PCA
is performed on the integrated data to reduce the dimension
to 20. Note that we also test the recently released Seurat
4 [60] and found it gives similar or slightly worse performance
compared with Seurat 3, so here we choose Seurat 3 for com-
parison. As suggested in the original ZINB-WaVE paper [24],
we feed 1000 HVGs to the zinbwave function provided in the
zinbwave R package, v.1.15.1.

C. Evaluation Metrics

Two widely used metrics adjusted rand index (ARI) and
accuracy (ACC) are utilized to evaluate the clustering per-
formance. Specifically, let ai be the number of cells from
cluster i according to the ground-truth labels, b j be the
number of cells assigned to cluster j by the algorithm, and
ni j be the number of cells that simultaneously belongs to
cluster i based on ground-truth labels and cluster j in cluster
assignments predicted by the algorithm, ARI measures the
similarity between the cluster assignments and ground-truth

labels, which is defined as follows:

ARI =

∑
i j

(ni j
2

)
−

[∑
i

(ai
2

)∑
j

(b j
2

)]/(N
2

)
1
2

[∑
i

(ai
2

)
+
∑

j

(b j
2

)]
−

[∑
i

(ai
2

)∑
j

(b j
2

)]/(N
2

) . (19)

Let vi and ui denote the ground-truth label and cluster assign-
ment of data point i , ACC is computed by the best matching
between the ground truth and cluster assignment, i.e.,

ACC =

∑N
i=1 δ(vi , map(ui ))

N
, δ(x, y) =

{
1, if x = y
0, otherwise

(20)

where map() corresponds to the best mapping found by the
Hungarian algorithm [61].

In addition, to reflect how robust is the clustering results
toward batch effects, we propose using KL divergence between
the observed and expected cell-batch co-occurrence matrix to
measure the robustness against batch effects. Specifically, let
O K×B and E K×B be the observed and expected co-occurrence
matrices which are based on predictions and ground truth
labels, respectively, the robustness metric is defined as follows:

BER =

B∑
b=1

K∑
k=1

Obk log
(

Okb + 1
Ekb + 1

)
∈ [0, ∞) (21)

where Okb/Ekb is the number of cells belonging to the
predicted/ground-truth cluster k and batch b. Like the ACC
metric, the Hungarian algorithm [61] is first applied to align
cluster assignments with ground-truth labels before computing
BER. Ideally, BER would become zero, and a smaller BER
value indicates better robustness.

D. Comparisons With State of the Arts

To the best of our knowledge, only a few clustering
methods have been proposed to handle the data with batch
effects, among which DESC [15] is a representative baseline.
To further stress the effectiveness of SCDC, we compare it
with the state-of-the-art batch integration methods, including
fastMNN [18], Harmony [26], scMerge [21], Seurat 3 [22],
and ZINB-WaVE [24]. As these batch integration methods are
not specifically designed for clustering, we conduct k-means
on the integrated representation to achieve clustering. All
methods are run seven times with different random seeds and
the average performance with standard deviation was reported
in Table II. As can be seen, our SCDC outperforms existing
methods by a large margin, which proves the effectiveness of
our disentanglement idea.

The performance of existing batch integration methods
might be limited by their heavy assumption that the biolog-
ical variances are much smaller than the batch differences.
However, we find that the assumption does not always hold
in practice. As an example, we illustrate the cosine similarity
between cells from batch 5 (GSE81608) and the other four
batches of the Human Pancreas dataset in Fig. 1(b). If the
assumption is held, the similarity matrix should be diagonal
at the rows and columns of four types of cells shared across
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Fig. 4. Visualization of the training process of SCDC on the Mouse Atlas dataset. (a) UMAP plots of the cell embedding at different epochs. (b) Quantitative
metrics across the training process.

Fig. 5. Performance of SCDC on mouse atlas with different choices of
hyperparameters α and β.

these batches, including alpha, beta, delta, and gamma. Nev-
ertheless, some cases violate the assumption. For example,
delta cells from batch 1 (GSE85241) are similar to beta,
delta, and gamma cells from batch 5; alpha cells from batch
5 have a similar cosine distance to alpha, beta, acinar, and
delta cells from batch 3 (GSE84133); delta and gamma cells
from batch 4 (GSE83138) shares high similarities with all
cells from batch 5. In other words, when the batch effects
become severer, the assumption of biological variances and
batch differences could be violated. As a result, most existing
methods that build upon the assumption would achieve inferior
performance. On the contrary, the proposed SCDC does not
rely on such an assumption, which provides a more general
solution.

E. Visualization

To provide an intuitive understanding of the clustering
results, we adopt uniform manifold approximation and pro-
jection (UMAP) [62] to visualize the features extracted by the
cell-type encoder in Fig. 3, compared with features learned by
other baseline methods. Ideally, cells from different batches,
but of the same type should be clustered together. In other
words, clusters are expected to be pure in odd rows, but
have more diverse colors in even rows. As shown, fastMNN,
Harmony, and Seurat3 improperly enrich the cell types, while
LIGER, scMerge, and ZINB-WaVE fail to distinguish some
types of cells on the mouse atlas. On cell line, DESC and
LIGER are severely influenced by the batch effects, leading to
wrong data partition. On the contrary, our SCDC shows supe-
rior robustness against batch effects, and it clusters scRNA-seq
data based on cell types as expected.

To reveal the clustering procedure of SCDC, we visualize
the embeddings and quantitative metrics across the training
process. As shown in Fig. 4(a), SCDC learns more com-
pact clusters and clearer cluster boundaries as the training
proceeds, which is also reflected in the steadily growing
clustering metrics ARI and ACC in Fig. 4(b). Notably, the
BER metric is relatively low at the start. Such a phe-
nomenon is reasonable since the initial random embedding
contains no batch effects nor cell-type information. Thanks
to the within-batch shuffling and batch discrimination strate-
gies, SCDC gradually disentangles batch effects from the
cell-type information, and finally converges to a low BER
metric.

F. Ablation Study and Parameter Analysis

To investigate the effectiveness of the proposed within-batch
shuffling (i.e., L̃ZINB) and batch discrimination (i.e., LCE),
we conduct ablation studies on mouse atlas and human pan-
creas by removing either L̃ZINB or LCE from (17). As shown
in Table III, the within-batch shuffling strategy is essential to
disentangle the biological and nonbiological information from
data. Without the strategy, cell-type information would leak
into the batch representation. Moreover, the batch discrimina-
tion strategy also improves the performance as it encourages
the batch encoder to capture nonbiological information for
better disentanglement.

We further evaluate SCDC with different hyperparame-
ters α and β that weigh the strength of two strategies in
Fig. 5. Specifically, for the within-batch shuffling strategy,
SCDC cannot fully disentangle biological and nonbiological
variances when α is too small, leading to poor batch effect
robustness. Meanwhile, an over-large α would hinder SCDC
from capturing biological information through the standard
ZINB reconstruction. For the batch discrimination strategy,
the performance of SCDC is stable for β ∈ [0.001, 0.01]

but decreases slightly when β is too large. The reason behind
such a phenomenon is as follows. Though being similar across
within-batch cells, batch effects still slightly vary in different
cells, especially for those of diverse types. However, an over-
large β tends to make the batch information homogeneous
across all cells from the same batch, thus leading to inferior
performance.
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TABLE III
ABLATION STUDY ON WITHIN-BATCH SHUFFLING

AND BATCH DISCRIMINATION

Fig. 6. Running time and memory consumption of different methods for the
various number of cells.

G. Scalability

With the development of sequencing techniques, the number
of cells profiled in scRNA-seq experiments grows continually,
arousing the demand for efficiently handling large scRNA-seq
data. To access how SCDC scales to large data, we evaluate its
time and memory consumption when applied to 2000–16 000
cells. As shown in Fig. 6, the running time of SCDC increases
linearly with cell numbers. Although SCDC consumes more
time than Harmony, the speed of SCDC could be further
improved by parallel training with multiple GPUs thanks to its
mini-batch optimization. Another benefit of SCDC is that its
memory consumption stays constant, whereas other methods
such as Harmony require at least linearly increasing memory
with cell numbers. Moreover, a more well-chosen optimizer
and a dedicated learning rate scheduler could speed up the
convergence of SCDC and save training epochs. In short,
the linear time and constant memory consumptions make
SCDC favorable to handle large scRNA-seq data. Despite the
computational efficiency, SCDC also achieves better clustering
performance on two large datasets (i.e., mouse retina and
mouse brain) as shown in Table II, which further strengthens
its scalability.

V. CONCLUSION

In this work, we present SCDC, an end-to-end clustering
method that is debiased toward nonbiological factors and
partitions data solely based on biological information. With the
designed disentanglement learning framework, SCDC could
successfully extract cell-type information from scRNA-seq
data confounded with a variety of batch effects, without
the assumption of biological variances and batch effects.
Different from iterative methods like LIGER [25] and Har-
mony [26], SCDC simultaneously and directly performs batch
effect removal and clustering, which is more simple yet
effective, avoiding the potential error accumulation during the
alternation. Evaluations on six benchmarks demonstrate the

superiority of SCDC compared with both batch integration
and clustering methods. Furthermore, SCDC scales to large
data with linearly increasing running time and a constant GPU
memory consumption. Considering its simplicity, effective-
ness, and scalability, SCDC would be a promising tool for
clustering scRNA-seq data with a larger number of cells and
severer batch effects, catering to the general trend brought by
the rapid development of scRNA-seq technologies.
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