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scBridge embraces cell heterogeneity in
single-cell RNA-seq and ATAC-seq data
integration

Yunfan Li 1,5, Dan Zhang 2,5, Mouxing Yang 1, Dezhong Peng 1, Jun Yu3,
Yu Liu4, Jiancheng Lv1, Lu Chen 2 & Xi Peng 1

Single-cell multi-omics data integration aims to reduce the omics difference
while keeping the cell type difference. However, it is daunting to model and
distinguish the two differences due to cell heterogeneity. Namely, even cells of
the same omics and type would have various features, making the two dif-
ferences less significant. In this work, we reveal that instead of being an
interference, cell heterogeneity could be exploited to improve data integra-
tion. Specifically, we observe that the omics difference varies in cells, and cells
with smaller omics differences are easier to be integrated. Hence, unlike most
existing works that homogeneously treat and integrate all cells, we propose a
multi-omics data integrationmethod (dubbed scBridge) that integrates cells in
a heterogeneous manner. In brief, scBridge iterates between i) identifying
reliable scATAC-seq cells that have smaller omics differences, and ii) inte-
grating reliable scATAC-seq cellswith scRNA-seqdata tonarrow theomics gap,
thus benefiting the integration for the rest cells. Extensive experiments on
sevenmulti-omics datasets demonstrate the superiority of scBridge compared
with six representative baselines.

Single-cell RNA sequencing (scRNA-seq)1 has been widely used and
made great progress in the fields of biology and medicine. Recently,
the advances in single-cell technologies have enabled profiling single
cells from different layers, such as chromatin accessibility (scATAC-
seq)2,3, spatial transcriptome (Stereo-seq)4, andproteome (ScoPE-MS)5.
Integrating diverse omics data provides a chance to reconstruct a
comprehensive molecular regulation network, and promote the
development of precision medicine. In particular, scATAC-seq studies
the physical structure of the genome by identifying open chromatin
regions, while the dynamic remodeling of chromatin structure is one
of themainmechanisms that affect transcription. Thus, the integration
of scATAC-seq and scRNA-seq allows not only observing the differ-
ences at the transcriptional level but also understanding the reasons
behind the differences from an epigenetic perspective6.

Several methods have been proposed to integrate transcriptomic
data7–14, which could also be used for multi-omics data integration.
However, suboptimal results would be achieved by directly applying
those transcriptomic-oriented methods to integrate scRNA-seq and
scATAC-seq, because the data distribution and sparsity level are vastly
different across omics15. To address this issue, some efforts have been
devoted to multi-omics data integration. Specifically, with the cross-
omics pairing information, scAI16 and MOFA+17 could perform joint
integration and clustering onmulti-omics data. However, it is daunting
to obtain suchpairing information due to the prohibitive cost ofmulti-
omics sequencing techniques18,19. As a remedy, the focus of the com-
munity has shifted to the scenariowherein the scRNA-seq and scATAC-
seq data are sequenced independently, i.e., unpaired. To integrate
unpaired multi-omics data, the most common paradigm is first
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independently conducting feature extraction in each omics, and then
reducing the omics difference in features through manifold
alignment20,21, mutual nearest neighbor (MNN) correction22, graph
linking23,24, and adversarial training25. A more straightforward solution
is explicitly modeling the omics difference as a factor in matrix
factorization26,27. Recently, considering the abundant annotated
scRNA-seq data, scJoint15 proposes to integratemulti-omics data under
the semi-supervised learning paradigm.

Although various methods have been developed and achieved
remarkable progress, most of them overlook the role of cell hetero-
geneity, not to mention exploiting it in the integration. To be specific,
the objective of multi-omics integration is to reduce the omics dif-
ferencewhile keeping the cell-type difference. However, due to the cell
heterogeneity, even the cells of the same omics and type would have
non-negligible variances which would make omics and cell-type dif-
ferences less significant. As a result, it is daunting to model and dis-
tinguish the two differences, leading to suboptimal integration results.
On the one hand, when the cell-type difference is falsely treated as the
omics difference and accordingly eliminated, the cells of different
types would be integrated, leading to the over-integration problem.
On the other hand, when the omics difference is falsely treated as the
cell-type difference and insufficiently reduced, the cells of different
omics would not be well mixed, leading to the under-integration
problem.

Here, we reveal that instead of being an interference, the cell
heterogeneity could be exploited to facilitate data integration based
on the following observation. Specifically, the chromatin accessibility
of scATAC-seq cells exhibits variable correlationswith gene expression
of scRNA-seq28,29. scATAC-seq cells with higher positive correlation
exhibit smaller omics differences, which are easier to integrate and
could bridge the modality gap between the two omics. According to
the observation, we designed scBridge, a heterogeneous transfer
learningmethod formulti-omics data integration. Briefly, scBridgefirst
warms up a deep neural classifier with the annotated scRNA-seq data,
and then identifies the scATAC-seq cells with smaller omics differences
through reliability modeling. After that, the reliable scATAC-seq cells
are integrated with scRNA-seq cells through cross-omics prototype
alignment. Lastly, scBridge selects and merges the most reliable
scATAC-seq cells into the annotated scRNA-seq data to narrow the
omics gap. By repeating the above processes, the omics difference
would be gradually reduced, and more cells would be integrated,
leading to the final integration result.

We evaluate the data integration performance of scBridge on
seven multi-omics datasets in terms of joint embedding quality and
label transfer accuracy. Extensive experimental results illustrate the
superiority of scBridge in data integration compared with scJoint15

(semi-supervised), Seuart22 (MNN-based), Portal25 (adversarial),
Harmony14 (transcriptomic-oriented), GLUE24 and Conos23 (graph-
based). Furthermore, the empirical evaluations show that scBridge is
robust against the number and quality of scRNA-seq annotations, the
inconsistency between scRNA-seq and scATAC-seq cell types, and
technical noises in sequencing data.

Results
The scBridge algorithm
scBridge is a semi-supervised method that integrates the annotated
scRNA-seq data and the unlabeled scATAC-seq data in a hetero-
geneous transfer learning manner. As illustrated in Fig. 1, scBridge
passes the data into a deep neural encoder and a classifier to achieve
data integration and label transfer with the help of a reliability mod-
eling module (Overview a). To be specific, scBridge first warms up the
networks using the annotated data (Step b). After that, the networks
are transferred to scATAC-seq data. However, such a vanilla transfer
paradigm would misclassify scATAC-seq cells due to the modality gap
between RNA and ATAC omics. Hence, to integrate the cells of

different types correctly, heterogeneous transfer learning is proposed
by utilizing cell heterogeneity. Specifically, a portion of scATAC-seq
cells exhibits smaller omics differences with scRNA-seq cells as their
chromatin accessibility has higher positive correlations with gene
expression. Consequently, the classification results on those scATAC-
seq cells are more reliable. To estimate the reliability of each scATAC-
seq cell, scBridge models the discriminability and confidence of
scATAC-seq cells with a Gaussian Mixture (Step c). To be specific,
scBridge computes the discriminability of each scATAC-seq cell based
on its distance to the RNA prototypes (computed by averaging scRNA-
seq cells of different types), as well as the confidence based on its
classification loss value. Cells with higher discriminability and con-
fidence are considered more reliable. With the estimated cell relia-
bility, scBridge computes the ATAC prototypes as the weighted
average of scATAC-seq cells with the same predicted cell type and
aligns them with the RNA prototypes to achieve integration (Step d).
Lastly, scBridge selects the most reliable scATAC-seq cells and merges
them into the annotated data, with labels given by the current classi-
fication results (Step e). The selected scATAC-seq cells could act as a
bridge to reduce the modality gap between RNA and ATAC omics. By
repeating steps b to e, scBridge takes a from-easy-to-hard learning
fashion to further identify and integrate the remaining scATAC-seq
cells that have more distinct features with scRNA-seq cells.

scBridge achieves promising integration results on the golden
benchmarks
To evaluate the integration performance of scBridge, we first applied it
to three golden benchmarks including the SNARE-seq dataset of
mousebrain cortex18, the SHARE-seq dataset of humanbonemarrow30,
and the 10x Multiome dataset of mouse kidney31. As these three
sequencing techniques could link the cell’s transcriptome with its
accessible chromatin, the pairing information provides a golden cri-
terion to validate the integration performance. Notably, the pairing
information was not used during integration, but only for validation.
Moreover, these three datasets cover three different tissues and two
species, which also evaluates the generalization ability of themethods.

To intuitively show how scBridge iteratively integrates scRNA-seq
and scATAC-seq data through heterogeneous transfer learning, we
visualized the integration process on the SNARE-seq dataset in Fig. 2c.
To be specific, the right figure shows the Pearson correlation score
(computed on all genes) between scRNA-seq cells and the selected
reliable scATAC-seq cells, where larger scores denote smaller omics
differences between scRNA-seq and scATAC-seq cells. As shown,
scBridge first integrates scATAC-seq cells that are most similar to
scRNA-seq cells and gradually integrates more distinct ones in the
subsequent iterations (t-test p-value < 1e − 3 in the first five iterations,
with the Pearson correlation score decreasing significantly). Such a
trend also holds in different types of cells as illustrated in Supple-
mentary Fig. 1a. Here, we took Ex-L2/3-Rasgrf2 cells of scATAC-seq as
an example to demonstrate various cell correlation levels across
omics. Supplementary Fig. 1b shows a decrease in the Rasgrf2 gene
activity as the model iterates. Meanwhile, Supplementary Fig. 1c
demonstrates that the discrepancy between Rasgrf2 gene activity and
gene expression increases as integration proceeds, consistent with the
results in Supplementary Fig. 1a. The left figure in Fig. 2c demonstrates
the reliable cell selection and overall label transfer accuracy across
iterations. In brief, after the first iteration, scBridge achieves 60.11%
label transfer accuracy for all scATAC-seq cells. Based on the Gaussian
Mixture Model, 1898 scATAC-seq cells are selected as the annotated
data with an accuracy of 90.89%. By using those reliable scATAC-seq
cells to bridge RNA and ATAC omics, scBridge achieves better inte-
gration results (63.62% label transfer accuracy) in the second iteration.
As the training proceeds, more scATAC-seq cells are selected as reli-
able by scBridge, and the label transfer accuracy steadily grows
to 71.95%.
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Figure 2a and Supplementary Fig. 2a illustrate the final data inte-
gration results achieved by scBridge and six baseline methods. As
shown, though all seven methods successfully mix scRNA-seq and
scATAC-seq cells, scBridge and scJoint achieve more discriminative
cell clusters comparedwith other baselines. In some clusters, however,
scJoint falsely integrates cells with different types, leading to inferior
label transfer performance. To further validate the superiority of
scBridge, Fig. 2d and Supplementary Fig. 2b visualize the confusion
matrix of the transferred labels. The results show that scBridge dis-
criminates the cells of different types more accurately compared with
all baselines. For example, scJoint fails to separate Claustrum,Mic, and
OPC cells, whereas scBridge achieves almost perfect label transfer on
them. By using the silhouette score and label transfer accuracy to
quantitatively evaluate the integration results, Fig. 2b shows that
scBridge achieves the highest harmonized silhouette score, indicating
its superiority in the removal of omics difference and the preservation
of cell-type difference. We also noticed that scBridge achieves a more
precise integration for the rare cell types, i.e., a significant improve-
ment on the weighted F1-score in label transfer (42.26% by scBridge
compared with 22.12% by scJoint).

We further visualized the joint embeddings obtained by scBridge
and scJoint on the SHARE-seq and 10x Multiome datasets in Fig. 2e–f.
On the SHARE-seq dataset, scBridge achieves better cell grouping than
scJoint, especially for the rare types like Baso. On the 10x Multiome
dataset, scBridge successfully mixes scRNA-seq and scATAC-seq cells,
while scJoint fails to eliminate the gapbetween the twomodalities. The
UMAP visualizations, label transfer matrix, and quantitative metrics of
scBridge and all other baselines are in Supplementary Figs. 3–4

demonstrate the superior performance of scBridge in data integration
and label transfer.

Finally, as the heterogeneous transfer learning paradigm of
scBridge requires the annotated scRNA-seq data, a natural question is
how many annotated scRNA-seq cells are needed for accurate inte-
gration. To answer this question, we evaluated the robustness of
scBridge against the number of annotations on the three golden
benchmarks, comparedwith four baselines that support label transfer.
Specifically, we carried out experiments by using 100%, 75%, 50%, and
25%of scRNA-seqdata. Figure 2g shows that scBridge achieves thebest
label transfer accuracy and F1-score under all downsample rates on
three benchmarks. Notably, on the 10x Multiome dataset, scBridge
remains a high average F1-score of 77.08% with only 25% annotated
scRNA-seq cells compared with 77.35% on full data. In contrast,
scJoint encounters a significant performance drop in average F1-score,
i.e., from 73.22% on full data to 59.36% on 25% downsampled data
(t-test p-value = 1.94e − 5, degrees of freedom=8, 95% confidence
interval = [0.103, 0.174]). In addition, scBridge with only 50% scRNA-
seq annotations outperforms all baselines with full data on the SNARE-
seq dataset. Such a data-efficient property of scBridge could be
attributed to its heterogeneous transfer learning paradigm.Namely, as
long as the annotated scRNA-seq data is enough for identifying a
portion of reliable scATAC-seq data, scBridge could progressively
integrate the rest cells.

scBridge scales to atlas data
With the development of sequencing techniques, the number of cells
profiled with various protocols grows continually, arousing the
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demand for efficiently handling large-scale data. To access how
scBridge scales to large data, we evaluated it on the mouse atlas
dataset. Specifically, we used the cells sequenced with FACS and dro-
plet protocols provided by Tabula-Muris32 as scRNA-seq data, and the
cells sequenced by Cusanovich et al.33 as scATAC-seq data. After data
preprocessing, 102,103 cells from 18 common types are selected for
evaluation.

To investigate the computation efficiency of scBridge, we applied
it to five subsets of mouse atlas with 5,000–80,000 cells. Figure 3c
shows the (logged) running time and memory consumption of all
tested methods with respect to different cell numbers. As shown,
scBridge takes linearly increasing running time (the third-best) and
constant memory consumption (the second-best), which is favorable
in scaling to large data.
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Fig. 2 | Integration results on threegoldenbenchmarks. aUMAPplot of the joint
embeddings obtained by the sevenmethods on the SNARE-seq dataset, where cells
are colored by types. b Quantitative evaluation on the SNARE-seq dataset in terms
of the joint embedding quality and label transfer accuracy. Source data are pro-
videdasa SourceDatafile. c (Left) Thenumber of reliable scATAC-seqcells selected
by scBridge with the corresponding accuracy, and the overall label transfer accu-
racy across the training process on the SNARE-seq dataset. (Right) The Pearson
correlation scorebetween scRNA-seqand the selected scATAC-seq cells indifferent
iterations. Sourcedata are provided as a SourceDatafile.dThe label transfermatrix
of the agreement between the predicted cell type and the ground-truth annotation.
A clearer diagonal structure denotes better label transfer performance. e UMAP

embeddings of scBridge and scJoint on the SHARE-seq dataset. f UMAP embed-
dings of scBridge and scJoint on the 10x Multiome dataset. The first and second
rows show cells colored by types (DCDP: Distal collecting duct principal cell, DCT:
Distal convoluted tubule cell, DTC: Distal tubule cell, PTC: Proximal tubule cell,
SMC: Smooth muscle cell, GP: Glomerular podocyte, PTBB: Proximal tubule brush
border cell) and omics, respectively. g The label transfer accuracy and F1-score of
the tested methods on three benchmarks, where 100%, 75%, 50%, and 25% anno-
tated scRNA-seq data are used. Five random experiments are conducted with dif-
ferent downsample rates. Each boxplot ranges from the upper and lower quartiles
with the median as the horizontal line and whiskers extend to 1.5 times the inter-
quartile range. Source data are provided as a Source Data file.

e

scBridge 1 - Silhouette (Omic)scJoint

c d

Astrocytes
B cell
Cardiac muscle cell
Dendritic cell
Endothelial cell

Enterocytes
Erythroblasts
HSC
Hepatocytes
KCDC

Macrophages
Microgollia
Monocytes
NK cell

Neuron
Oligodendrocytes
T cell
Type II pneumocyte

Silhouette (Type)
1.00

0.98

0.96

0.94

0.92

scBridge

scJoint
Seurat

Porta
l

Harm
ony

GLUE
Conos

0.7

0.1

0.3

0.5

-0.1

scBridge

scJoint
Seurat

Porta
l

Harm
ony

GLUE
Conos

ATAC-seq RNA-seq

P
er

ce
nt

 E
xp

re
ss

ed

0

2

4

6

0

1

2

G
en

e 
ac

tiv
ity

 s
co

re
s

M
on

oc
yt

es

M
ac

ro
ph

ag
es

H
S

C

C
d6
8

T
gf
bi

C
d3
4

Astrocytes
B cell

Cardiac muscle cell
Dendritic cell

Endothelial cell
Enterocytes

Erythroblasts
HSC

Hepatocytes
KCDC

Macrophages
Microgollia
Monocytes

NK cell
Neuron

Oligodendrocytes
T cell

Type II pneumocyte

C
el

l T
yp

e

scBridge: (Accuracy: 94.04%, F1 Score: 89.66%)
1.0

0.8

0.6

0.4

0.2

0.0

scJoint: (Accuracy: 86.72%, F1 Score: 64.60%) Seurat: (Accuracy: 63.74%, F1 Score: 44.64%)

Prediction

a b

A
st

ro
cy

te
s

B
 c

el
l

C
ar

di
ac

 m
us

cl
e 

ce
ll

D
en

dr
iti

c 
ce

ll
E

nd
ot

he
lia

l c
el

l
E

nt
er

oc
yt

es
E

ry
th

ro
bl

as
ts

H
S

C
H

ep
at

oc
yt

es
K

C
D

C
M

ac
ro

ph
ag

es
M

ic
ro

go
lli

a
M

on
oc

yt
es

N
K

 c
el

l
N

eu
ro

n
O

lig
od

en
dr

oc
yt

es
T

 c
el

l
Ty

pe
 II

 p
ne

um
oc

yt
e

Astrocytes
B cell

Cardiac muscle cell
Dendritic cell

Endothelial cell
Enterocytes

Erythroblasts
HSC

Hepatocytes
KCDC

Macrophages
Microgollia
Monocytes

NK cell
Neuron

Oligodendrocytes
T cell

Type II pneumocyte

C
el

l T
yp

e

Prediction

A
st

ro
cy

te
s

B
 c

el
l

C
ar

di
ac

 m
us

cl
e 

ce
ll

D
en

dr
iti

c 
ce

ll
E

nd
ot

he
lia

l c
el

l
E

nt
er

oc
yt

es
E

ry
th

ro
bl

as
ts

H
S

C
H

ep
at

oc
yt

es
K

C
D

C
M

ac
ro

ph
ag

es
M

ic
ro

go
lli

a
M

on
oc

yt
es

N
K

 c
el

l
N

eu
ro

n
O

lig
od

en
dr

oc
yt

es
T

 c
el

l
Ty

pe
 II

 p
ne

um
oc

yt
e

Prediction

A
st

ro
cy

te
s

B
 c

el
l

C
ar

di
ac

 m
us

cl
e 

ce
ll

D
en

dr
iti

c 
ce

ll
E

nd
ot

he
lia

l c
el

l
E

nt
er

oc
yt

es
E

ry
th

ro
bl

as
ts

H
S

C
H

ep
at

oc
yt

es
K

C
D

C
M

ac
ro

ph
ag

es
M

ic
ro

go
lli

a
M

on
oc

yt
es

N
K

 c
el

l
N

eu
ro

n
O

lig
od

en
dr

oc
yt

es
T

 c
el

l
Ty

pe
 II

 p
ne

um
oc

yt
e

Astrocytes
B cell

Cardiac muscle cell
Dendritic cell

Endothelial cell
Enterocytes

Erythroblasts
HSC

Hepatocytes
KCDC

Macrophages
Microgollia
Monocytes

NK cell
Neuron

Oligodendrocytes
T cell

Type II pneumocyte

C
el

l T
yp

e

2

4

6

0

5

10

5,000 10,000 20,000 40,000 80,000
Cell Number

T
im

e 
(lo

gg
ed

 s
ec

on
ds

)
M

em
or

y 
(G

B
s)

scBridge Seurat Harmony Conos
scJoint Portal GLUE

Fig. 3 | Integration results onmouse atlas data. aUMAP visualization of the joint
embeddings learned by scBridge and scJoint. The first and second rows show cells
colored by types (HSC: Hematopoietic stemcell, KCDC: Kidney collecting duct cell)
and omics, respectively. b The cell type and 1 − omics silhouette coefficients of
scBridge and six baselines on five random experiments. Each boxplot ranges from
the upper and lower quartiles with the median as the horizontal line and whiskers
extend to 1.5 times the interquartile range. Source data are provided as a Source
Data file. c The running time and memory consumption of different methods on

mouse atlas subsets of 5,000--80,000 cells. Source data are provided as a Source
Data file. d The dot plot of relative expression of marker genes Tgfbi, Cd68, Cd34 in
cells predicted as HSC, Macrophages, and Monocytes by scBridge. The size of the
circle represents the proportion of expressing cells, and the color indicates the
average expression level. e The agreement between the predicted label and the
manual annotation. Matrices with a clearer diagonal structure indicate better
performance.
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Despite the scalability and efficiency of scBridge, we also eval-
uated its effectiveness on the full mouse atlas data. As visualized in
Fig. 3a and Supplementary Fig. 5a, scBridge achieves better grouping
of cells by types and mixing of cells by omics. The superiority of
scBridge is also verified according to the cell type and omics silhouette
score in Fig. 3b. To evaluate the label transfer performance, we illu-
strated the label transfer matrix in Fig. 3e and Supplementary Fig. 5b.
As shown, scBridge (89.66% F1-score) achieves a clearer diagonal label
transfer matrix compared with scJoint (64.60% F1-score) and Seurat
(44.64% F1-score), which indicates a more precise cell integration.
Additionally, we observed that Hematopoietic stem cells (HSC) were
annotated as HSC, Macrophage, and Monocyte by scBridge, but only
Macrophageby scJoint. To explore such adifference,we computed the
activity score of themarker genes Cd34, Cd68, Tgfbi for the three types
in Fig. 3d. The results verify that scBridge makes more reasonable and
accurate cell-type predictions than scJoint. Notably, despite the
immense differences between FACS and droplet data (the FACS
method captures fewer cells but detects more molecules per cell than
the microfluidic-droplet method), scBridge does not require any pre-
integration of these two batches of data, which demonstrates its
capacity to handle data with batch effects. Note that not all results
agree with those reported in the scJoint paper15 due to the slight dif-
ferences in data preprocessing.

To further investigate the influence of the annotation number, we
carried out experiments by using 25%, 50%, and 75%of scRNA-seq data.
As shown in Supplementary Fig. 5c, even with only 25% annotated
scRNA-seq cells, scBridge still outperforms scJoint with 100% data (t-
test p-value = 0.014, degrees of freedom= 8, 95% confidence inter-
val = [0.010, 0.066]). In addition, the weighted F1-score gaps between
scBridge and the baselines are significant, indicating the superiority of
scBridge in integrating cells of rare types. For example, under the
downsample rate of 75%, scBridge outperforms scJoint by 25.03% (t-
test p-value = 2.84e − 5, degrees of freedom= 8, 95% confidence inter-
val = [0.182, 0.318]) and Seurat by 47.36% (t-test p-value = 3.23e − 9,
degrees of freedom= 8, 95% confidence interval = [0.434, 513]) in term
of F1-score on average. In summary, the computational- and data-
efficient properties, as well as its superior performance,make scBridge
a promising tool in handling large-scale multi-omics data.

scBridge handles data with inconsistent cell type across omics
In the above experiments, the cell type is consistent across scRNA-seq
and scATAC-seq data. In practice, however, such consistency does not
always hold. Hence, it is highly expected to explore how data inte-
gration methods behave when cell types unmatch across omics. For
this purpose, we evaluated scBridge on the human myocardial
infarction data34, which consists of 67,360 scRNA-seq cells from 11
types, and 46,086 scATAC-seq cells from 8 types after preprocessing.
More specifically, Mast, Adipocyte, andCycling cells are only observed
in scRNA-seq data. Experimental results in Supplementary Fig. 7 show
that scBridge not only learns the joint embedding with better cell-type
grouping and omics mixing but also achieves the best performance in
all five data integration and label transfer metrics.

Furthermore, we conducted a more challenging evaluation by
manually removing the Myeloid cells from scRNA-seq data. In other
words, there are only 7 cell types in common for scRNA-seq and
scATAC-seq data, and both of them have unique cell types. The UMAP
visualizations in Fig. 4a and Supplementary Fig. 6a illustrate that
scJoint fails to integrate the cells from different omics, and other
methods achieve less distinct partition of cells with different types
compared with scBridge. According to the label transfer matrix in
Fig. 4d, scBridge, and Seurat transfer fewer scATAC-seq cells of com-
mon types to the three unique types in scRNA-seq data than GLUE and
Conos, and scBridge achieves more precise label transfer results
among the seven common types. Next, we focused on the integration
results for Myeloid cells in scATAC-seq data, which is novel with

respect to the annotations in scRNA-seq data. Equipped with the
structure preservation loss, scBridge assigns a relatively low con-
fidence score for scATAC-seq Myeloid cells as shown in Fig. 4b. To
identify cells of novel types, instead of manually setting a confidence
threshold, we proposed a data-driven strategy by fitting the con-
fidence score of all cells with a two-component GMM. As shown in
Fig. 4b, the confidence threshold is estimated by the intersection of
two probability density functions (PDF). In other words, cells belong-
ing to the less confident GMM component are considered novel.
According to the novel type identification performance shown in
Fig. 4c and Supplementary Fig. 6d, scBridge gives a more distinct
pattern between cells of common and novel types, leading to the
highest F1-score for novel type discovery. The superiority of scBridge
is also verified by the label transfer matrix in Fig. 4d, namely, it assigns
fewer cells of common types as novel.

scBridge is robust to the dropout technical noise in sequen-
cing data
In single-cell sequencing studies, it is inevitable to introduce technical
noises in sequencing data due to biological and technical limitations
such as amplication bias, low starting mRNA amount, and sequencing
depth. For example, a typical technical noise is the dropout event,
where some entries in the gene expression or activity matrices are
false-zeros35. Accordingly, the data would be contaminated with con-
siderable non-biological variances, hurting the data integration
performance.

To investigate the robustness of scBridge against the dropout
technical noise, we applied it to the human hematopoiesis data which
contains 34,609 scRNA-seq and 33,819 scATAC-seq cells from 23
common types. To simulate the dropout events, we downsampled the
scRNA-seq count matrix, scATAC-seq activity matrix, and scATAC-seq
peak-by-cell matrix by 25%, 50%, and 75%, respectively, with the
downsampleMatrix function provided in the scuttle R package36. As
shown in Fig. 5c, scBridge achieves superior robustness towards the
scRNA-seq data quality. Namely, its integration and label transfer
performances are almost impervious under up to 75% dropout rate on
scRNA-seq data. By comparison, though GLUE achieves higher label
transfer accuracy than scBridge on the original data, its performance
becomes worse and unstable on data contaminated with dropout
noises. Similarly, scJoint achieves a comparable silhouette score with
scBridge, but encounters prominent performance reduction as the
dropout rate increases. Figure 5a, b, and Supplementary Fig. 8
demonstrate the superiority of scBridge over six baselines in data
integration and label transfer. Likewise, scBridge also achieves better
performance on the corrupted scATAC-seq data, especially under high
dropout rates as shown inFig. 5c. Such robustnessof scBridge couldbe
attributed to its iterative and heterogeneous integration paradigm.
Namely, even if the sequencing data is of low capture rate, scBridge
could still identify a portion of reliable scATAC-seq data, which further
helps the model to integrate the rest cells. Note that some results do
not exactly match those reported in the scJoint paper15 due to the
differences in data preprocessing and the added dropout corruption.

scBridge is robust to noisy labels in scRNA-seq data annotation
Cell-type annotation is challenged by incomplete messenger RNA
detection, a lack of curated marker gene lists, improper handling of
batch effects, and difficulties in leveraging the latent gene-gene
interaction information37. It is inevitable to introduce somenoisy labels
during the manual or automatic annotation. As scBridge requires
annotated scRNA-seq data, it is highly expected that scBridge is robust
against noisy labels.

We conducted evaluations on the multi-modal PBMC data38 con-
sisting of 4644 and 4157 cells of seven types from scRNA-seq and
scATAC-seq data, respectively. As shown in Fig. 6b, c, scBridge, scJoint,
Seurat, and GLUE achieve promising results when the annotations in
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scRNA-seq data are accurate. Specifically, scBridge achieves the best
label transfer accuracy and F1-score, outperforming the second-best
method scJoint by about 5% on average with t-test p-value ≤ 1e-3 in the
two metrics. To simulate label corruptions, we randomly shuffled 5%,
10%, and 20% percent of annotations in the scRNA-seq data. According
to the results in Fig. 6c, scJoint achieves inferior performance than
Seurat and GLUE even under a small label corruption rate of 5%. In
contrast, scBridge outperforms them under all corruption rates (t-test
p-value = 2e-6, 8e-4, and 0.1 under rates 5%, 10%, and 20% respectively
in F1-score compared with Seurat), demonstrating its ability to handle
data with label corruptions.

Finally, we validated scBridge’s cell-type predictions of Naive
CD4+ T cells using Protein CD45RA and gene CCR7, as well as Effector
CD4+ T cells using Protein CD45RO and gene PLEKHG3 in Fig. 6d.
Furthermore, we reconstructed the cell differentiation trajectory using
monocle39 in Supplementary Fig. 9c. As shown, the RNA Pseudotime
shows a trend from Naive CD4+ T cells to Effector CD4+ T cells,
reflecting the CD4+ T cell differentiation. The UMAP plots in Fig. 6d

show that scBridge reflects the continuous trajectory better than
scJoint.

Discussion
By utilizing cell heterogeneity, scBridge achieves accurate scRNA-seq
and scATAC-seq data integration, as well as label transfer with het-
erogeneous transfer learning. To summarize, scBridge accepts anno-
tated scRNA-seq data and unlabeled scATAC-seq data to perform
integration in an iterative manner. In each iteration, scBridge models
the reliability of heterogeneous scATAC-seq cells and conducts cross-
omics prototype alignment based on the estimated cell reliability.
After that, scBridge selects the most reliable scATAC-seq cells as the
annotated data and repeats the entire process. As the training pro-
ceeds, the modality gap between RNA and ATAC omics is gradually
reduced, which enables scBridge to identify and integrate more
scATAC-seq cells, leading to the final integration result. On seven
multi-omics data integration benchmarks, scBridge outperforms six
representative baselines in both joint embedding quality and label
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Fig. 4 | Integration results on the human myocardial infarction data, where
both RNA and ATAC omics have their unique cell types (adipocyte, cycling
cells, and mast cells only exist in scRNA-seq data, and Myeloid cells only exist
in scATAC-seq data). a UMAP visualization of the joint embedding obtained by
scBridge, scJoint, Seurat, GLUE, and Conos. The first and second rows show cells
colored by types and omics, respectively. The novel Myeloid cells are gray-colored
and red-circled. b (Left) scBridge’s UMAP embedding of scATAC-seq cells, colored
by the confidence score. (Right) scBridge’s novel type threshold was estimated by

applying a two-component GMM on the confidence score. c The confidence score
predicted by scBridge and Seurat on different types of 46,086 scATAC-seq cells.
The red dashed line corresponds to the novel type confidence threshold estimated
by GMM. Each miniature boxplot ranges from the upper and lower quartiles with
the median as the horizontal line and whiskers extend to 1.5 times the interquartile
range. d The label transfer results of scBridge, Seurat, GLUE, and Conos. Cells are
considered novel if their confidence scores are below the threshold esti-
mated by GMM.
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transfer accuracy. In addition to its superior performance, scBridge
also shows strong robustness against (i) the number of annotated
scRNA-seq cells, (ii) the inconsistency between scRNA-seq and
scATAC-seq cell types, (iii) the dropout technical noise in sequencing
data, and (iv) the quality of scRNA-seq annotations.

Though scBridge is a deep learning-based method, we simplified
its structure and hyper-parameters to avoid laborious parameter tun-
ing on different datasets. We fixed the same set of hyper-parameters
on all seven datasets and scBridge achieves the best performance
without any parameter tuning. In other words, users only need to
decide whether to turn on the structure preservation loss to enable
novel type discovery or strictly integrate all scATAC-seq cells with
annotated scRNA-seq data, based on practical needs. Moreover, as

scBridge only requires mini-batch optimization, it naturally scales to
large-scale data, with a linear time and constantmemory consumption
with respect to the cell number.

In this paper, we have focused on integrating scRNA-seq and
scATAC-seq data. But theoretically, scBridge could extend to other
modalities as long as the input data matrix is aligned in columns
(i.e., genes, proteins, etc.). We found that when directly applied to
the protein data from the human peripheral blood mononuclear
dataset, scBridge still achieves better integration and label transfer
performance compared with scJoint (Supplementary Note 1).
Notably, scBridge does not strictly require all scRNA-seq cells to
be annotated and scATAC-seq cells to be unlabeled. Cell annota-
tions from any omics could be easily incorporated into the
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Fig. 5 | Integration results on human hematopoiesis data. a UMAP visualization
of the joint embeddings learned by scBridge, scJoint, Seurat, and Portal under 75%
dropout on scRNA-seq data, where cells are colored by types. b The agreement
between labels transferred by scBridge, Seurat, and the manual annotations under
75% dropout on scRNA-seq data. A clearer diagonal structure indicates better
agreement. cThe F1 harmonized silhouette score and theweighted F1 label transfer

accuracy of scBridge and six baselines with different dropout corruption rates on
scRNA-seq and scATAC-seq data. Five random experiments are conducted under
eachdropout rate. Eachboxplot ranges from the upper and lowerquartileswith the
median as the horizontal line and whiskers extend to 1.5 times the interquartile
range. Source data are provided as a Source Data file.
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heterogeneous integration framework of scBridge, which is flexible
in practice.

In conclusion, scBridge is a multi-omics data integration method
based on a novel paradigm, i.e., heterogeneous transfer learning.
Considering the large amounts ofwell-annotated scRNA-seq data and a
wide range of scRNA-seq annotation tools40, scBridge has a promising
application prospect. With its superior performance compared with
existing baselines, robustness against different occasions, and scal-
ability to large datasets, scBridge would be a reliable tool in single-cell
multi-omics analysis.

Methods
scBridge
For the given scRNA-seq data Xs 2 Rns ×m and scATAC-seq data
Xt 2 Rnt ×m, scBridge employs a shared deep encoder network f:
X→ E to learn cell embeddings followed by a shared classification
head g: E→ Y to classify both Xs and Xt, where ns and nt denote the
number of scRNA-seq and scATAC-seq cells, m is the number of

their common genes, and Xs 2 Rns ×m is with the annotation
Ys 2 Rns

. scBridge integrates multi-omics data in an iterative man-
ner. First, scBridge warms up f( ⋅ ), g( ⋅ ) using annotated scRNA-seq
data. The performance of f( ⋅ ), g( ⋅ ) is limited when directly trans-
ferred to scATAC-seq data due to the omics difference. Thanks to
cell heterogeneity, a portion of scATAC-seq cells exhibit smaller
omics differences with scRNA-seq cells. Consequently, the model
could learn more discriminative embeddings and make more
accurate cell-type predictions for those scATAC-seq cells. To iden-
tify those reliable scATAC-seq cells, scBridge models the reliability
of scATAC-seq cells by fitting the embedding discriminability and
classification confidence with the Gaussian Mixture. Based on the
estimated cell reliability, scBridge computes the prototypes in
ATAC omics and aligns them with the RNA prototypes for integra-
tion. Lastly, scBridge selects the most reliable scATAC-seq cells as
the annotated data and repeats the entire training process. During
the iterations, the modality gap between RNA and ATAC omics is
gradually narrowed, enabling scBridge to identify and integrate
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transferred by scBridge, scJoint, and Seurat. A clearer diagonal structure indicates
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more cells, and precisely predict their cell type Y t 2 Rnt
. The

training procedure of scBridge is elaborated below.

Warm-upwith annotated scRNA-seqdata. To endow the deep neural
networks f( ⋅ ), g( ⋅ ) with the capacity of feature extraction and cell
classification, we first use the annotated scRNA-seq data {Xs, Ys} to
warm-up f( ⋅ ) and g( ⋅ ) with the following weighted cross-entropy loss:

LWCE =
1
N

PN
i = 1
�ws

i log
exp ps

i ysi½ �ð ÞPK

k = 1
exp ps

i ½k�ð Þ

� �
,

ws
i =

K=jY s
yi
j

1=jY s
y1
j + ���+ 1=jY s

yK
j ,p

s
i = g f xs

i

� �� �
,

ð1Þ

whereN andKdenote themini-batch size and cell-type number, xs
i and

ysi denote the gene expression and annotation of the i-th cell, ps
i refers

to the predicted soft label of sample i, and jYs
k j indicates the number of

cells belonging to the k-th class. Here the weight ws
i is adopted to

alleviate the influence of the highly imbalanced distribution of cells
across different types.

Reliability modeling for scATAC-seq data with the Gaussian Mix-
ture. After the warm-up, the model is able to correctly predict cell
types for scRNA-seq data. However, the classification performance on
scATAC-seq data is undesirable due to the modality gap between RNA
and ATAC omics. Nevertheless, thanks to cell heterogeneity, we
observe that a portion of scATAC-seq cells exhibit smaller omics dif-
ferences with scRNA-seq cells when their chromatin accessibility has
higher positive correlations with gene expression, and those cells are
easier to integrate. Specifically, the deep embedding network f( ⋅ )
tends to extract more discriminative features, and the classifier g( ⋅ )
tends tomakemoreconfidentpredictions for thosecells.Motivatedby
such an observation, to identify those reliable cells that have smaller
omics differences, we model the reliability of scATAC-seq cells with
Gaussian Mixture based on their discriminability and confidence.
Specifically, the discriminability dt

i of scATAC-seq data embedding
Et = f(Xt) is calculated by the distance to class centers of scRNA-seq data
embedding:

dt
i = max cosðcs1,eti Þ, . . . , cosðcsK ,eti Þ

� �
,

csk =
1
jXs

k j
X
xsi 2X

s
k

f ðxsi Þ,Xs
k = fxsi jysi = kg, ð2Þ

where cosð�,�Þ denotes the cosine similarity, csk is the center of scRNA-
seq cells from the k-th class Xs

k in the embedding space, and eti refers to
the embedding of the i-th scATAC-seq cell. The confidence of each
prediction is evaluated through the following cross-entropy loss:

lti = � log
exp pt

i ŷti
h i� 	

PK
k = 1 exp pt

i ½k�
� �

0
@

1
A,pt

i = g f xt
i

� �� �
, ŷti = argmax ðpt

i Þ, ð3Þ

where ŷti denotes the current prediction for the i-th scATAC-seq cell.
Note that lti would be smaller when the prediction is more confident
(i.e., closer to one-hot). Given the discriminability dt = fdt

1,d
t
2, . . . ,d

t
nt g,

as well as the losses lt = flt1,lt2, . . . ,ltnt g for all ATAC cells, we fit their
distribution using two-component GMM ga and gb

, respectively:

ga dt
� 	

= γca1 ϕ dt jca1
� 	

+ γca2 ϕ dt jca2
� 	

,

gb lt
� 	

= γcb1 ϕ lt jcb1
� 	

+ γcb2 ϕ lt jcb2
� 	

,
ð4Þ

where γc�1 ,γc�2 denote themixture coefficient for components c�1,c
�
2, and

ϕ �jc�1
� �

,ϕ �jc�2
� �

refer to the probability density. Without loss of gen-
erality, we assume that the mean values of two components satisfy

μc�1
<μc�2

. Based on our observation, the cells belonging to components
ca2 and cb1 are more likely to be correctly classified. Accordingly, we
design the following cross-omics prototype alignment strategy to
integrate scRNA-seq and scATAC-seq data.

Cross-omics prototype alignment with the estimated cell relia-
bility. To align cells of the same type across different omics, we pro-
pose minimizing the pair-wise distance between cross-omics
prototypes. The prototype in scRNA-seq data corresponds to the class
center as defined in Eq. (2), while the prototype in scATAC-seq data is
defined as the weighted mean as follows:

ctk =
1

jXt
k j

X
xti2X

t
k

pðca2 jdt
i Þpðcb1 jlti Þf ðxt

i Þ,Xt
k = fxt

i jŷti = kg, ð5Þ

wherepðca2 jd
t
i Þ 2 ½0,1� corresponds to theprobability of cell ibelonging

to the second component ca2 in GMM ga, and pðcb1 jl
t
i Þ 2 ½0,1� the prob-

ability belonging to the first component cb1 in GMM gb. Such a GMM-
based sampleweighting approach is designed to alleviate the influence
of false classified cells and prevent the over-integration problem,
because the false classified cells are likely to be assignedwith relatively
low probabilities pðca2 jd

t
i Þ and pðcb1 jl

t
i Þ.

Our integration objective is to minimize the cosine distance
between prototypes csk and ctk . However, it is daunting to compute
global prototypes in the mini-batch optimization paradigm. Hence, as
a remedy, we initialize the prototypes with global information and
updated them with the exponential moving average via

�csk  η�csk + ð1� ηÞ � csk ,
�ctk  η�ctk + ð1� ηÞ � ctk ,

ð6Þ

where �c�k is globally initialized prototype, c�k refers to the prototype in
each mini-batch, and η is the momentum parameter. The data inte-
gration is achieved by minimizing the pair-wise distance between
cross-omics prototypes:

LALN =
XK
k = 1

cosð�csk ,�ctkÞ: ð7Þ

Iterative integration with heterogeneous transfer learning. Due to
the cell heterogeneity and large modality gap between RNA and ATAC
omics, it is hard to accurately integrate all cells at a time. As a solution,
we take an iterative integration paradigm. To be specific, we select the
most reliable scATAC-seq cells ~X

t
as annotated data at the end of each

iteration if their GMMprobabilities pðca2 jd
t
i Þ and pðcb1 jl

t
i Þ are larger than

the threshold α. After that, we treat the annotated scRNA-seq data and
the selected scATAC-seq data as annotated. Together with the
remaining unlabeled scATAC-seq data, we retrain the network via

Xs  Xs ∪ ~X
t
,

Xt  Xt n ~Xt
:

ð8Þ

Such a heterogeneous transfer learning paradigm could gradually
eliminate the omics difference, allowing the model to accurately
integrate and classify more cells. The above process is repeated until
no more reliable scATAC-seq data can be selected.

To sum up, scBridge first warms up the deep neural networks f( ⋅ )
and g( ⋅ ) with the annotated scRNA-seq data by Eq. (1). After that,
scBridge models the cell reliability with Eq. (4), and performs cross-
omics prototype alignment with Eq. (7), namely,

LBridge = LWCE + LALN: ð9Þ

Finally, scBridge selects the most reliable scATAC-seq cells as the
annotated data and repeats the training process until convergence.
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The overall algorithm of scBridge is summarized in Supplemen-
tary Note 4.

(Optional) Structure preservation for novel-type discovery. With
our iterative integration paradigm, eventually, almost all scATAC-seq
cells would be annotated. In other words, they would be integrated
with the most similar cells in scRNA-seq data. However, the scRNA-seq
annotations may not cover all cell types in scATAC-seq data. To
address this challenge, scBridge is equipped with the following struc-
ture preservation loss to develop the capacity of novel cell-type dis-
covery, namely,

LSTC =
1
N2

P
i,j
max At

ij � Â
t
ij

� 	2
� ϵ,0


 �
,

At
ij =

1, if xt
i ,x

t
j are K mutual neighbor

0, else

(
, Â

t
ij = σðx̂ti x̂t>

j Þ,
ð10Þ

where ϵ is the relaxation parameter which is set to 0.01 by default, σ
denotes the ReLU activation, At is the adjacency matrices computed
from the raw scATAC-seq data, and Â

t
is the approximation of At.

Instead of directly computing Â
t
in the embedding space, we adopt a

two-layer network f̂ ð�Þ to project the embedding Et into another hidden
space via X̂

t
= f̂ ðEtÞwherein Â

t
is computed. Accordingly, the objective

function of scBridge becomes:

L0Bridge = LWCE + LALN + LSTC: ð11Þ
After training, scBridge computes the confidence score rti for each

scATAC-seq cell based on the estimated cell reliability, namely,

rti =pðca2 jdt
i Þpðcb1 jlti Þ, ð12Þ

wherepðca2 jd
t
i Þ 2 ½0,1� corresponds to theprobability of cell ibelonging

to the second component ca2 in GMM ga, and pðcb1 jl
t
i Þ 2 ½0,1� the prob-

ability belonging to the first component cb1 in GMM gb, following the
definitions in Eq. (4) and (5). With the structure preservation loss,
scBridge would assign a lower confidence score for the scATAC-seq
cells with unseen types, thus enabling novel type discovery. More
details and guidance on novel type discovery are provided in
Supplementary Note 2. To balance the integration performance and
the sensitivity of novel type discovery, we recommend stopping the
iteration when more than 75% scATAC-seq cells are selected as the
annotated data under such a setting.

Implementation details. scBridge is implemented in Python using the
PyTorch41 framework, v.1.12.1. The deep embedding network f( ⋅ ) is a
fully connected network (FCN) with the dimension ofm-256-64, where
m is the number of common genes between scRNA-seq and scATAC-
seqdata, andK is the number of cell types in the scRNA-seq annotation.
The classification head g( ⋅ ) is a one-layer FCN with dimension 64-K. In
all experiments, we fixed the warm-up epochs E1 = 1, the training
epochs E2 = 19, the prototypemomentum η =0.9, and the reliable data
selection threshold α =0.95. To speed up the training, we early stop-
ped the network optimization when the cell classification accuracy of
the annotated data reached 99%. We adopted the Gaussian Mixture
Model provided in the Scikit-learn Python package42, v.1.1.1. The
scBridge model is trained with mini-batches of size 512 by the AdamW
optimizer43,44 with a learning rate 5e − 4. All experiments are conducted
on an Nvidia RTX 3090 GPU with CUDA 11.4, on the Ubuntu 20.04 OS.

Data preprocessing
scBridge accepts the gene expression matrix of scRNA-seq data and
the gene activity matrix of scATAC-seq data as the inputs. For scRNA-
seq data, we first normalized each cell by dividing its total number of

read counts on all genes, and then multiplied them by 10,000 to
ensure that total counts are the same across cells. After that, we log
normalized the read counts and scaled the data to have unit variance
and zero means. For scATAC-seq data, we first applied the TF-IDF
transformation on the gene activity matrix (more discussions are
provided in Supplementary Note 3), and then scaled the data to have
unit variance and zeromeans as well. The detailed preprocessing steps
for each dataset are elaborated below:

• Mouse SNARE-seq cortex data. The gene expression, gene
activity, and peak-by-cell matrices were downloaded from NCBI
GEO accession number GSE12607418. The fastq downloaded
fromSRP18352118 was aligned with themouse reference genome
GRCm38 using bwa45, v0.7.17-r1198-dirty19, with the parameter
of bwa mem. Next, the fragment files were derived from the
alignment using sinto, v0.9.0, with the parameters into
fragments. In addition, the gene activity matrix was generated
using Signac46, v1.8.0, resulting in a dataset with 9,134 cells and
16,750 genes for the integrative analysis. The cell types were
manually annotated according to reported cell-type
markers18,47,48.

• Human SHARE-seq BMMC data. The gene expression matrix,
peak-by-cell matrix, fragments file, and cell-type annotations
were downloaded from NCBI GEO accession number
GSE20730830. The gene activity matrix was generated using
Signac46, v1.8.0, resulting in adatasetwith 78,520 cells and 17,701
genes for the integrative analysis.

• Mouse 10x Multiome kidney data. The gene expression, peak-
by-cellmatrix, and fragments file weredownloaded fromhttps://
www.10xgenomics.com/resources/datasets/mouse-kidney-
nuclei-isolated-with-chromium-nuclei-isolation-kit-saltyez-
protocol-and-10x-complex-tissue-dp-ct-sorted-and-ct-unsorted-
1-standard31. The gene activity matrix was generated using
Signac46, v1.8.0, resulting in a dataset with 14,527 cells and
20,105 genes. The cell types weremanually annotated according
to the reported cell-type markers32.

• Mouse atlas data. The microfluidic-droplet and FACS raw gene
expression count matrices with cell-type annotations of the
Mouse atlas scRNA-seq data32 were downloaded from https://
tabula-muris.ds.czbiohub.org/. The unnormalized gene activity
matrix and cell-type annotations of the mouse atlas scATAC-seq
data33 were downloaded from https://atlas.gs.washington.edu/
mouse-atac/. The peak-by-cell matrix was downloaded from
NCBIGEOaccession numberGSE11158633.We renamed somecell
types to keep them consistent between scRNA-seq and scATAC-
seq data (e.g., “Immature B cell”, “Activated B cell”, and “B cell”
into “B cell”). We reserved cells of 18 common types and 12,689
common genes for the analysis, resulting in a FACS dataset with
21,197 cells, a droplet dataset with 24,965 cells, and a scATAC-
seq dataset with 55,941 cells. The FACS and droplet datasets
were combined as the scRNA-seq data.

• Humanmyocardial infarction data. The gene expression, gene
activity matrix, and clustering results of human myocardial
infarction data34 were downloaded from https://cellxgene.
cziscience.com/collections/8191c283-0816-424b-9b61-
c3e1d6258a77,with 191,795 snRNA-seq cells and 46,086 scATAC-
seq cells. The peak-by-cell matrix was downloaded from https://
zenodo.org/record/6578553and https://zenodo.org/record/
6578617.To construct a relatively balanced snRNA-seq dataset,
we subsampled maxf0:05ni,10,000g cells for cell type i with the
number of cells ni > 10, 000. All cells are included for cell types
with fewer than 10,000 cells, resulting in 67,360 cells from the
snRNA-seq data. The number of common genes between two
omics is 17,878.

• Human hematopoiesis data. The gene expression, gene activ-
ity, peak-by-cell matrices, and clustering results of human
hematopoiesis data49 from healthy donors were downloaded
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from https://github.com/GreenleafLab/MPAL-Single-Cell-2019.
We excluded cells annotated as “Unknown”, resulting in
34,609 cells for scRNA-seq data and 33,819 cells for scATAC-
seqdata for the analysis. The number of commongenes between
two omics is 15,715.

• Human peripheral blood mononuclear cells (PBMC). The
original CITE-seq data, ASAP-seq data, and fragments file are
provided in GSE15647838. For convenience, we downloaded the
preprocessed data provided in https://github.com/SydneyBioX/
scJoint/blob/main/data.zip, which contains 4,644 CITE-seq and
4,506ASAP-seq cellsof 7 common types.Thepeak-by-cellmatrix
was calculated using the R package ArchR50, v1.0.2, with default
parameters. Though both CITE-seq and ASAP-seq could profile
chromatin and protein levels simultaneously, only gene expres-
sion and activity matrices are used to focus on the scRNA-seq
and scATAC-seq data integration. Additionally, we show that
scBridge could also integrate the protein data in Supplemen-
tary Note 1.

Performance and benchmarking
Baseline methods. Six single-cell data integration methods were
benchmarked for comparisons, including scJoint15, Seurat22, Portal25,
Harmony14, GLUE24, and Conos23.

For scJoint15, we adopted the official code released in https://
github.com/SydneyBioX/scJoint, with hyper-parameters provided in
the code example or recommended in the paper. Since scJoint first
binarizes the gene expression and activity matrices, no data pre-
processing is needed. The algorithm directly outputs the embedding
of both scRNA-seq and scATAC-seq data (_embeddings.txt), the trans-
ferred label for scATAC-seq data (_knn_predictions.txt), as well as the
confidence score (_knn_probs.txt).

For Seurat, we used Seurat R package22, v4.1.4. The raw count
matrix of scRNA-seq and the unnormalized gene activity matrix of
scATAC-seq were transformed into Seurat objects using the Cre-
ateSeuratObject function. With the NormalizeData, FindVaria-
bleFeatures, ScaleData, and RunPCA functions, the Seurat objects
were further processed, where the PCA dimensions were set to 1:30
for scRNA-seq data and 2: 30 for scATAC-seq data, respectively.
After that, the FindTransferAnchors function was adopted to iden-
tify the anchors between scRNA-seq and scATAC-seq datasets.
Then, the TransferData function was employed to impute and
integrate the scATAC-seq data, and transfer the annotations from
the scRNA-seq dataset into the scATAC-seq cells. The TransferData
function also outputs the confidence score of each prediction.
Finally, PCA was performed on the combined matrix of scRNA-seq
data and imputed scATAC-seq data to obtain features. If not men-
tioned, all parameters are set as default.

For Portal, we used the portal-sc Python package25, v1.0.2. Fol-
lowing its default pipeline, we used the model.preprocess function to
preprocess the gene expression matrix and gene activity matrix. After
that, the model.train function was used to integrate data. We set trai-
ning_steps= 1000 for datasets with sample size <20,000 and trai-
ning_steps= 2000 otherwise, as suggested in the package. Finally, the
integration results were obtained from model.latent after running the
model.eval function. As Portal itself does not support label transfer,we
adopted the KNeighborsClassifier function with k = 10 provided in the
scikit-learn Python package42, v1.1.3, to transfer cell annotations from
scRNA-seq to scATAC-seq data.

For Harmony, we adopted the same data preprocessing pipeline
as scBridge, followed by a PCA dimensional reduction with 50 com-
ponents, and then used the official harmonypy Python package14

(https://github.com/slowkow/harmonypy), v0.0.5, with the recom-
mended parameters for data integration. As Harmony itself does not
support label transfer, we adopted the KNeighborsClassifier function

with k = 10 provided in the scikit-learn Python package42, v1.1.3, to
transfer cell annotations from scRNA-seq to scATAC-seq data.

For GLUE, we adopted the official code released in https://
github.com/gao-lab/GLUE, v0.3.2. Following its default pipeline, we
first preprocessed the scRNA-seq expression and scATAC-seq peak-
by-cell matrices and then constructed the prior regulatory graph.
After that, we trained a glue model to integrate data with the
scglue.models.fit_SCGLUE function. Then, we applied the model for
cell and feature embedding using the encode_data function. Finally,
cell annotations with confidence scores were transferred from
scRNA-seq to scATAC-seq data with the scglue.data.transfer_labels
function.

For Conos, we used conos R package23, v1.4.6. The raw count
matrix of scRNA-seq and the unnormalized gene activity matrix of
scATAC-seq were first preprocessed by the basicP2proc function
provided in pagoda2 R package51, v1.0.10. Then, the joint graph was
built by the bulidGraph function with parameters k = 15, k. self = 5, k.
self.weigh = 0.01,ncomps = 30,n. odgenes = 5e3, and space= 0PCA0. The
joint embedding was generated by the embedGraph function. Finally,
labels were propagated from the scRNA-seq to the scATAC-seq based
on the joint graph using the propagateLabels function, which also
outputs the confidence scoreof eachprediction. All parameters are set
as default if not mentioned.

Evaluation metrics. We adopted the cell classification accuracy (ACC)
and weighted F1-score (F1) to measure the performance of label
transfer. Specifically, let ŷi and yibe the predicted type and the ground-
truth annotation for cell i, ACCmeasures the percentage of cells being
correctly classified, i.e.,

ACC=

PN
i= 1δ ŷi, yi

� �� �
N

,δða,bÞ= 1 if a=b,

0 otherwise.

�
ð13Þ

Considering the severe data imbalance amongdifferent cell types,
ACC would be dominated by large cell types, leading to partial eva-
luation for those small classes. Hence, we chose the weighted average
F1-score as another measurement for comprehensive evaluations,
where the weight is inversely proportional to the number of cells for
each cell type. Mathematically,

F1 =
XK
k = 1

wk
2ðPk � RkÞ
Pk +Rk

,wk =
1=jYyi

j
1=jYy1

j+ � � � + 1=jYyK
j , ð14Þ

where Pk, Rk denote the Precision and Recall for the k-th cell type, and
jYyi
j refers to the number of cells belonging to type k.
Silhouette coefficients were adopted to evaluate the joint

embedding after data integration. We computed silhouette coeffi-
cients given cell types and omics respectively, denoted by SilType and
SilOmic. Since one expects the cross-omics cells of the same type to be
mixed, higher SilType and lower SilOmic indicate better results. To pro-
vide anoverallmeasure, we harmonized the twosilhouette coefficients
via

SilF1 = 2*
1� SilOmic + 1

� �
=2

� �
SilType + 1

� 	
=2

h i
1� SilOmic + 1

� �
=2

� �
+ SilType + 1

� 	
=2

h i , ð15Þ

where a higher SilF1 score indicates better integration results.
To evaluate the performance of novel type prediction perfor-

mance, we treated it as a novel/seen binary classification task and
evaluated the performance via

NovelF1 =
2TP

2TP+ FP+FN
, ð16Þ
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where TP, FP, FN stands for true positive, false positive, and false
negative, respectively. A higher NovelF1 score corresponds to a more
accurate novel-type prediction.

Trajectory analysis. The monocle R package39, v2.22.0, was used to
infer the pseudotime in Naive CD4+ T cells and Effector CD4+ T cells
from the PBMC dataset, with its default parameters. The inferred
pseudotime was then projected to the UMAP plots obtained by
scBridge and scJoint.

Visualization. We used features extracted by the deep embedding
network f( ⋅ ) as cell representations and adopted the harmony and
umap functions provided in the Scanpy Python package52, v1.9.1, with
the default parameters to reduce the dimension to two and visualize
cells. Dot plots and feature plots were performed using the ggplot2 R
package53, v3.3.2. Other plots were based on the seaborn Python
package54, v0.11.2.

Statistical and reproducibility. Statistical analyseswere performedby
the SciPy Python package55, v1.11.1. p-value was determined by a two-
sided t-test, and p-value < 0.05 is considered statistically significant. All
experiments are conducted under five randomizations with different
model initializations. No data were excluded and no statistical meth-
ods were used to predetermine sample size. Investigators were not
blinded to allocation during library preparation, experiments, or
analysis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets used in this work are publicly available. Mouse SNARE-seq
cortex data18 used in this study are available in the GEO database with
accession ID GSE126074. Human SHARE-seq BMMC data30 used in this
study are available in the GEO database with accession ID GSE207308.
Mouse 10x Multiome kidney data31 used in this study could be down-
loaded from https://www.10xgenomics.com/resources/datasets/
mouse-kidney-nuclei-isolated-with-chromium-nuclei-isolation-kit-
saltyez-protocol-and-10x-complex-tissue-dp-ct-sorted-and-ct-
unsorted-1-standard. Mouse atlas scRNA-seq data32 used in this study
are available in Figshare (https://figshare.com/projects/Tabula_Muris_
Transcriptomic_characterization_of_20_organs_and_tissues_from_Mus_
musculus_at_single_cell_resolution/27733). Mouse atlas scATAC-seq
data33 used in this study are available in the GEO database with
accession ID GSE111586 and https://atlas.gs.washington.edu/mouse-
atac/. Human myocardial infarction data34 used in this study are
available in Zenodo databases with accession ID 6578553, 6578617, and
https://cellxgene.cziscience.com/collections/8191c283-0816-424b-
9b61-c3e1d6258a77. Human hematopoiesis data49 could be down-
loaded from https://github.com/GreenleafLab/MPAL-Single-Cell-2019.
Human PBMC data38 could be downloaded from https://github.com/
SydneyBioX/scJoint/blob/main/data.zip. Source data are provided in
this paper.

Code availability
The implementation of scBridge is available on https://github.com/
XLearning-SCU/scBridge56.
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